Mister Exam

Other calculators

(3+2i)/(1-2i)=z equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
3 + 2*I    
------- = z
1 - 2*I    
$$\frac{3 + 2 i}{1 - 2 i} = z$$
Detail solution
Given the linear equation:
(3+2*i)/(1-2*i) = z

Expand brackets in the left part
3+2*i1-2*i = z

Looking for similar summands in the left part:
(1 + 2*i)*(3 + 2*i)/5 = z

Move the summands with the unknown z
from the right part to the left part:
$$- z + \frac{\left(1 + 2 i\right) \left(3 + 2 i\right)}{5} = 0$$
Divide both parts of the equation by (-z + (1 + 2*i)*(3 + 2*i)/5)/z
z = 0 / ((-z + (1 + 2*i)*(3 + 2*i)/5)/z)

We get the answer: z = -1/5 + 8*i/5
The graph
Rapid solution [src]
       1   8*I
z1 = - - + ---
       5    5 
$$z_{1} = - \frac{1}{5} + \frac{8 i}{5}$$
z1 = -1/5 + 8*i/5
Sum and product of roots [src]
sum
  1   8*I
- - + ---
  5    5 
$$- \frac{1}{5} + \frac{8 i}{5}$$
=
  1   8*I
- - + ---
  5    5 
$$- \frac{1}{5} + \frac{8 i}{5}$$
product
  1   8*I
- - + ---
  5    5 
$$- \frac{1}{5} + \frac{8 i}{5}$$
=
  1   8*I
- - + ---
  5    5 
$$- \frac{1}{5} + \frac{8 i}{5}$$
-1/5 + 8*i/5
Numerical answer [src]
z1 = -0.2 + 1.6*i
z1 = -0.2 + 1.6*i