3(m+n)-2(m-n) equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
3*(m+n)-2*(m-n) = 0
Expand brackets in the left part
3*m+3*n-2*m+2*n = 0
Looking for similar summands in the left part:
m + 5*n = 0
Move the summands with the other variables
from left part to right part, we given:
$$5 n = - m$$
Divide both parts of the equation by 5
n = -m / (5)
We get the answer: n = -m/5
Sum and product of roots
[src]
re(m) I*im(m)
- ----- - -------
5 5
$$- \frac{\operatorname{re}{\left(m\right)}}{5} - \frac{i \operatorname{im}{\left(m\right)}}{5}$$
re(m) I*im(m)
- ----- - -------
5 5
$$- \frac{\operatorname{re}{\left(m\right)}}{5} - \frac{i \operatorname{im}{\left(m\right)}}{5}$$
re(m) I*im(m)
- ----- - -------
5 5
$$- \frac{\operatorname{re}{\left(m\right)}}{5} - \frac{i \operatorname{im}{\left(m\right)}}{5}$$
re(m) I*im(m)
- ----- - -------
5 5
$$- \frac{\operatorname{re}{\left(m\right)}}{5} - \frac{i \operatorname{im}{\left(m\right)}}{5}$$
re(m) I*im(m)
n1 = - ----- - -------
5 5
$$n_{1} = - \frac{\operatorname{re}{\left(m\right)}}{5} - \frac{i \operatorname{im}{\left(m\right)}}{5}$$
n1 = -re(m)/5 - i*im(m)/5