Mister Exam

Other calculators

3(m+n)-2(m-n) equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
3*(m + n) - 2*(m - n) = 0
$$- 2 \left(m - n\right) + 3 \left(m + n\right) = 0$$
Detail solution
Given the linear equation:
3*(m+n)-2*(m-n) = 0

Expand brackets in the left part
3*m+3*n-2*m+2*n = 0

Looking for similar summands in the left part:
m + 5*n = 0

Move the summands with the other variables
from left part to right part, we given:
$$5 n = - m$$
Divide both parts of the equation by 5
n = -m / (5)

We get the answer: n = -m/5
The graph
Sum and product of roots [src]
sum
  re(m)   I*im(m)
- ----- - -------
    5        5   
$$- \frac{\operatorname{re}{\left(m\right)}}{5} - \frac{i \operatorname{im}{\left(m\right)}}{5}$$
=
  re(m)   I*im(m)
- ----- - -------
    5        5   
$$- \frac{\operatorname{re}{\left(m\right)}}{5} - \frac{i \operatorname{im}{\left(m\right)}}{5}$$
product
  re(m)   I*im(m)
- ----- - -------
    5        5   
$$- \frac{\operatorname{re}{\left(m\right)}}{5} - \frac{i \operatorname{im}{\left(m\right)}}{5}$$
=
  re(m)   I*im(m)
- ----- - -------
    5        5   
$$- \frac{\operatorname{re}{\left(m\right)}}{5} - \frac{i \operatorname{im}{\left(m\right)}}{5}$$
-re(m)/5 - i*im(m)/5
Rapid solution [src]
       re(m)   I*im(m)
n1 = - ----- - -------
         5        5   
$$n_{1} = - \frac{\operatorname{re}{\left(m\right)}}{5} - \frac{i \operatorname{im}{\left(m\right)}}{5}$$
n1 = -re(m)/5 - i*im(m)/5