Mister Exam

Other calculators

3/((2sin^3(pi+x))+(sqrt(3)/4cos^2(pi/2-x)))-4/(2cos(3pi/2-x)+sqrt(3)/3sin^2(pi+x))=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
                 3                                     4                      
----------------------------------- - ------------------------------------ = 0
                   ___                                    ___                 
     3           \/ 3     2/pi    \        /3*pi    \   \/ 3     2            
2*sin (pi + x) + -----*cos |-- - x|   2*cos|---- - x| + -----*sin (pi + x)    
                   4       \2     /        \ 2      /     3                   
$$\frac{3}{2 \sin^{3}{\left(x + \pi \right)} + \frac{\sqrt{3}}{4} \cos^{2}{\left(- x + \frac{\pi}{2} \right)}} - \frac{4}{\frac{\sqrt{3}}{3} \sin^{2}{\left(x + \pi \right)} + 2 \cos{\left(- x + \frac{3 \pi}{2} \right)}} = 0$$
The graph
Sum and product of roots [src]
sum
  pi   pi   2*pi   4*pi
- -- + -- + ---- + ----
  3    3     3      3  
$$\left(\left(- \frac{\pi}{3} + \frac{\pi}{3}\right) + \frac{2 \pi}{3}\right) + \frac{4 \pi}{3}$$
=
2*pi
$$2 \pi$$
product
-pi  pi 2*pi 4*pi
----*--*----*----
 3   3   3    3  
$$\frac{4 \pi}{3} \frac{2 \pi}{3} \cdot - \frac{\pi}{3} \frac{\pi}{3}$$
=
     4
-8*pi 
------
  81  
$$- \frac{8 \pi^{4}}{81}$$
-8*pi^4/81
Rapid solution [src]
     -pi 
x1 = ----
      3  
$$x_{1} = - \frac{\pi}{3}$$
     pi
x2 = --
     3 
$$x_{2} = \frac{\pi}{3}$$
     2*pi
x3 = ----
      3  
$$x_{3} = \frac{2 \pi}{3}$$
     4*pi
x4 = ----
      3  
$$x_{4} = \frac{4 \pi}{3}$$
x4 = 4*pi/3
Numerical answer [src]
x1 = -93.2005820564972
x2 = -68.0678408277789
x3 = -79.5870138909414
x4 = -89.0117918517108
x5 = 63.8790506229925
x6 = 82.7286065445312
x7 = -85.870199198121
x8 = -4.18879020478639
x9 = -16.7551608191456
x10 = 74.3510261349584
x11 = 61.7846555205993
x12 = -35.6047167406843
x13 = 93.2005820564972
x14 = 2.0943951023932
x15 = 33.5103216382911
x16 = -76.4454212373516
x17 = -32.4631240870945
x18 = 30.3687289847013
x19 = -63.8790506229925
x20 = 39.7935069454707
x21 = -70.162235930172
x22 = 70.162235930172
x23 = 38.7463093942741
x24 = 76.4454212373516
x25 = -39.7935069454707
x26 = -77.4926187885482
x27 = 29.3215314335047
x28 = 89.0117918517108
x29 = -96.342174710087
x30 = 85.870199198121
x31 = 98.4365698124802
x32 = -24.0855436775217
x33 = -90.0589894029074
x34 = -41.8879020478639
x35 = 23.0383461263252
x36 = 60.7374579694027
x37 = 90.0589894029074
x38 = -2.0943951023932
x39 = 41.8879020478639
x40 = 26.1799387799149
x41 = 55.5014702134197
x42 = -61.7846555205993
x43 = 71.2094334813686
x44 = 68.0678408277789
x45 = -38.7463093942741
x46 = -13.6135681655558
x47 = -55.5014702134197
x48 = -82.7286065445312
x49 = 77.4926187885482
x50 = -26.1799387799149
x51 = 8.37758040957278
x52 = -64.9262481741891
x53 = 52.3598775598299
x54 = -46.0766922526503
x55 = -33.5103216382911
x56 = 16.7551608191456
x57 = -60.7374579694027
x58 = 5.23598775598299
x59 = -99.4837673636768
x60 = 45.0294947014537
x61 = -27.2271363311115
x62 = 67.0206432765823
x63 = -5.23598775598299
x64 = 96.342174710087
x65 = -11.5191730631626
x66 = 49.2182849062401
x67 = -83.7758040957278
x68 = -54.4542726622231
x69 = 19.8967534727354
x70 = 48.1710873550435
x71 = -49.2182849062401
x72 = -10.471975511966
x73 = 4.18879020478639
x74 = 32.4631240870945
x75 = 11.5191730631626
x76 = 83.7758040957278
x77 = -42.9350995990605
x78 = -71.2094334813686
x79 = -19.8967534727354
x80 = 27.2271363311115
x81 = 54.4542726622231
x82 = -20.943951023932
x83 = 99.4837673636768
x84 = 92.1533845053006
x85 = -48.1710873550435
x86 = 46.0766922526503
x87 = 24.0855436775217
x88 = 10.471975511966
x89 = 17.8023583703422
x90 = -17.8023583703422
x91 = -57.5958653158129
x92 = -92.1533845053006
x93 = -52.3598775598299
x94 = 104.71975511966
x95 = -98.4365698124802
x95 = -98.4365698124802