Mister Exam

Other calculators

tan(pi*(x-3))/6=1 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
tan(pi*(x - 3))    
--------------- = 1
       6           
$$\frac{\tan{\left(\pi \left(x - 3\right) \right)}}{6} = 1$$
Detail solution
Given the equation
$$\frac{\tan{\left(\pi \left(x - 3\right) \right)}}{6} = 1$$
- this is the simplest trigonometric equation
Divide both parts of the equation by 1/6

The equation is transformed to
$$\tan{\left(\pi x \right)} = 6$$
This equation is transformed to
$$\pi x = \pi n + \operatorname{atan}{\left(6 \right)}$$
Or
$$\pi x = \pi n + \operatorname{atan}{\left(6 \right)}$$
, where n - is a integer
Divide both parts of the equation by
$$\pi$$
we get the answer:
$$x_{1} = \frac{\pi n + \operatorname{atan}{\left(6 \right)}}{\pi}$$
The graph
Sum and product of roots [src]
sum
atan(6)
-------
   pi  
$$\frac{\operatorname{atan}{\left(6 \right)}}{\pi}$$
=
atan(6)
-------
   pi  
$$\frac{\operatorname{atan}{\left(6 \right)}}{\pi}$$
product
atan(6)
-------
   pi  
$$\frac{\operatorname{atan}{\left(6 \right)}}{\pi}$$
=
atan(6)
-------
   pi  
$$\frac{\operatorname{atan}{\left(6 \right)}}{\pi}$$
atan(6)/pi
Rapid solution [src]
     atan(6)
x1 = -------
        pi  
$$x_{1} = \frac{\operatorname{atan}{\left(6 \right)}}{\pi}$$
x1 = atan(6)/pi
Numerical answer [src]
x1 = 0.447431543288747
x1 = 0.447431543288747