tan(-22.3°)=2*tan(x°) equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
tan ( ( − 1 ) 223 10 π 360 ) = 2 tan ( π x 360 ) \tan{\left(\frac{\left(-1\right) \frac{223}{10} \pi}{360} \right)} = 2 \tan{\left(\frac{\pi x}{360} \right)} tan ( 360 ( − 1 ) 10 223 π ) = 2 tan ( 360 π x ) - this is the simplest trigonometric equation
Divide both parts of the equation by -2 The equation is transformed to
tan ( π x 360 ) = − tan ( 223 π 3600 ) 2 \tan{\left(\frac{\pi x}{360} \right)} = - \frac{\tan{\left(\frac{223 \pi}{3600} \right)}}{2} tan ( 360 π x ) = − 2 tan ( 3600 223 π ) This equation is transformed to
π x 360 = π n + atan ( − tan ( 223 π 3600 ) 2 ) \frac{\pi x}{360} = \pi n + \operatorname{atan}{\left(- \frac{\tan{\left(\frac{223 \pi}{3600} \right)}}{2} \right)} 360 π x = πn + atan ( − 2 tan ( 3600 223 π ) ) Or
π x 360 = π n − atan ( tan ( 223 π 3600 ) 2 ) \frac{\pi x}{360} = \pi n - \operatorname{atan}{\left(\frac{\tan{\left(\frac{223 \pi}{3600} \right)}}{2} \right)} 360 π x = πn − atan ( 2 tan ( 3600 223 π ) ) , where n - is a integer
Divide both parts of the equation by
π 360 \frac{\pi}{360} 360 π we get the answer:
x 1 = 360 ( π n − atan ( tan ( 223 π 3600 ) 2 ) ) π x_{1} = \frac{360 \left(\pi n - \operatorname{atan}{\left(\frac{\tan{\left(\frac{223 \pi}{3600} \right)}}{2} \right)}\right)}{\pi} x 1 = π 360 ( πn − atan ( 2 t a n ( 3600 223 π ) ) )
The graph
0 -80 -60 -40 -20 20 40 60 80 -100 100 5 -5
/ /223*pi\\
|tan|------||
| \ 3600 /|
-360*atan|-----------|
\ 2 /
x1 = ----------------------
pi
x 1 = − 360 atan ( tan ( 223 π 3600 ) 2 ) π x_{1} = - \frac{360 \operatorname{atan}{\left(\frac{\tan{\left(\frac{223 \pi}{3600} \right)}}{2} \right)}}{\pi} x 1 = − π 360 atan ( 2 t a n ( 3600 223 π ) )
x1 = -360*atan(tan(223*pi/3600)/2)/pi
Sum and product of roots
[src]
/ /223*pi\\
|tan|------||
| \ 3600 /|
-360*atan|-----------|
\ 2 /
----------------------
pi
− 360 atan ( tan ( 223 π 3600 ) 2 ) π - \frac{360 \operatorname{atan}{\left(\frac{\tan{\left(\frac{223 \pi}{3600} \right)}}{2} \right)}}{\pi} − π 360 atan ( 2 t a n ( 3600 223 π ) )
/ /223*pi\\
|tan|------||
| \ 3600 /|
-360*atan|-----------|
\ 2 /
----------------------
pi
− 360 atan ( tan ( 223 π 3600 ) 2 ) π - \frac{360 \operatorname{atan}{\left(\frac{\tan{\left(\frac{223 \pi}{3600} \right)}}{2} \right)}}{\pi} − π 360 atan ( 2 t a n ( 3600 223 π ) )
/ /223*pi\\
|tan|------||
| \ 3600 /|
-360*atan|-----------|
\ 2 /
----------------------
pi
− 360 atan ( tan ( 223 π 3600 ) 2 ) π - \frac{360 \operatorname{atan}{\left(\frac{\tan{\left(\frac{223 \pi}{3600} \right)}}{2} \right)}}{\pi} − π 360 atan ( 2 t a n ( 3600 223 π ) )
/ /223*pi\\
|tan|------||
| \ 3600 /|
-360*atan|-----------|
\ 2 /
----------------------
pi
− 360 atan ( tan ( 223 π 3600 ) 2 ) π - \frac{360 \operatorname{atan}{\left(\frac{\tan{\left(\frac{223 \pi}{3600} \right)}}{2} \right)}}{\pi} − π 360 atan ( 2 t a n ( 3600 223 π ) )
-360*atan(tan(223*pi/3600)/2)/pi