Mister Exam

Other calculators

sqrt(x)-((x)^(1/(3)))=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
  ___    0.333333333333333    
\/ x  - x                  = 0
$$- x^{0.333333333333333} + \sqrt{x} = 0$$
Detail solution
Given the equation
$$- x^{0.333333333333333} + \sqrt{x} = 0$$
Obviously:
x0 = 0

next,
transform
$$x^{0.166666666666667} = 1$$
Because equation degree is equal to = 0.166666666666667 - does not contain even numbers in the numerator, then
the equation has single real root.
We raise the equation sides to 6-th degree:
We get:
$$\left(x^{0.166666666666667}\right)^{6} = 1^{6}$$
or
$$x = 1$$
We get the answer: x = 1

The final answer:
x0 = 0

$$x_{1} = 1$$
The graph
Rapid solution [src]
x1 = 0.0
$$x_{1} = 0.0$$
x2 = 1.0
$$x_{2} = 1.0$$
x2 = 1.0
Sum and product of roots [src]
sum
0.0 + 1.0
$$0.0 + 1.0$$
=
1.00000000000000
$$1.0$$
product
0.0*1.0
$$0.0 \cdot 1.0$$
=
0
$$0$$
0
Numerical answer [src]
x1 = 1.0
x2 = 0.0
x2 = 0.0