sqrt(x)-((x)^(1/(3)))=0 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
$$- x^{0.333333333333333} + \sqrt{x} = 0$$
Obviously:
x0 = 0
next,
transform
$$x^{0.166666666666667} = 1$$
Because equation degree is equal to = 0.166666666666667 - does not contain even numbers in the numerator, then
the equation has single real root.
We raise the equation sides to 6-th degree:
We get:
$$\left(x^{0.166666666666667}\right)^{6} = 1^{6}$$
or
$$x = 1$$
We get the answer: x = 1
The final answer:
x0 = 0
$$x_{1} = 1$$
$$x_{1} = 0.0$$
$$x_{2} = 1.0$$
Sum and product of roots
[src]
$$0.0 + 1.0$$
$$1.0$$
$$0.0 \cdot 1.0$$
$$0$$