sqrtx-2/3=0 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
$$\sqrt{x} - \frac{2}{3} = 0$$
Because equation degree is equal to = 1/2 - does not contain even numbers in the numerator, then
the equation has single real root.
We raise the equation sides to 2-th degree:
We get:
$$\left(\sqrt{x}\right)^{2} = \left(\frac{2}{3}\right)^{2}$$
or
$$x = \frac{4}{9}$$
We get the answer: x = 4/9
The final answer:
$$x_{1} = \frac{4}{9}$$
Sum and product of roots
[src]
$$\frac{4}{9}$$
$$\frac{4}{9}$$
$$\frac{4}{9}$$
$$\frac{4}{9}$$
x2 = 0.444444444444539 + 4.09726113892774e-13*i
x3 = 0.444444444444444 - 2.31433384328189e-17*i
x3 = 0.444444444444444 - 2.31433384328189e-17*i