Mister Exam

Other calculators

sqrt(3-2*x^2)=1 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   __________    
  /        2     
\/  3 - 2*x   = 1
$$\sqrt{3 - 2 x^{2}} = 1$$
Detail solution
Given the equation
$$\sqrt{3 - 2 x^{2}} = 1$$
$$\sqrt{3 - 2 x^{2}} = 1$$
We raise the equation sides to 2-th degree
$$3 - 2 x^{2} = 1$$
$$3 - 2 x^{2} = 1$$
Transfer the right side of the equation left part with negative sign
$$2 - 2 x^{2} = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = -2$$
$$b = 0$$
$$c = 2$$
, then
D = b^2 - 4 * a * c = 

(0)^2 - 4 * (-2) * (2) = 16

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = -1$$
$$x_{2} = 1$$

Because
$$\sqrt{3 - 2 x^{2}} = 1$$
and
$$\sqrt{3 - 2 x^{2}} \geq 0$$
then
$$1 \geq 0$$
The final answer:
$$x_{1} = -1$$
$$x_{2} = 1$$
The graph
Sum and product of roots [src]
sum
-1 + 1
$$-1 + 1$$
=
0
$$0$$
product
-1
$$-1$$
=
-1
$$-1$$
-1
Rapid solution [src]
x1 = -1
$$x_{1} = -1$$
x2 = 1
$$x_{2} = 1$$
x2 = 1
Numerical answer [src]
x1 = 1.0
x2 = 1.00000000000001 - 2.29357658304174e-14*i
x3 = 1.0 - 7.34230992648723e-16*i
x4 = -1.0
x5 = -1.0 + 7.37283988973141e-18*i
x6 = -1.00000000000015 + 3.17331468384823e-13*i
x7 = 1.00000000000024 - 5.11807934893169e-13*i
x8 = 1.0 - 1.18366876199835e-19*i
x9 = 1.0 - 1.47194975295652e-17*i
x10 = -1.0 + 1.35175819520003e-14*i
x11 = -1.0 + 4.06521773899487e-16*i
x11 = -1.0 + 4.06521773899487e-16*i