Mister Exam

Other calculators

sqrt(3-2*sqrt(2))+sqrt(18-8*sqrt(2))=x equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   _____________      ______________    
  /         ___      /          ___     
\/  3 - 2*\/ 2   + \/  18 - 8*\/ 2   = x
$$\sqrt{3 - 2 \sqrt{2}} + \sqrt{18 - 8 \sqrt{2}} = x$$
Detail solution
Given the linear equation:
sqrt(3-2*sqrt(2))+sqrt(18-8*sqrt(2)) = x

Expand brackets in the left part
sqrt3-2*sqrt+2)+sqrt18-8*sqrt+2) = x

Move the summands with the unknown x
from the right part to the left part:
$$- x + \sqrt{3 - 2 \sqrt{2}} + \sqrt{18 - 8 \sqrt{2}} = 0$$
Divide both parts of the equation by (sqrt(3 - 2*sqrt(2)) + sqrt(18 - 8*sqrt(2)) - x)/x
x = 0 / ((sqrt(3 - 2*sqrt(2)) + sqrt(18 - 8*sqrt(2)) - x)/x)

We get the answer: x = sqrt(3 - 2*sqrt(2)) + sqrt(18 - 8*sqrt(2))
The graph
Sum and product of roots [src]
sum
   _____________      ______________
  /         ___      /          ___ 
\/  3 - 2*\/ 2   + \/  18 - 8*\/ 2  
$$\sqrt{3 - 2 \sqrt{2}} + \sqrt{18 - 8 \sqrt{2}}$$
=
   _____________      ______________
  /         ___      /          ___ 
\/  3 - 2*\/ 2   + \/  18 - 8*\/ 2  
$$\sqrt{3 - 2 \sqrt{2}} + \sqrt{18 - 8 \sqrt{2}}$$
product
   _____________      ______________
  /         ___      /          ___ 
\/  3 - 2*\/ 2   + \/  18 - 8*\/ 2  
$$\sqrt{3 - 2 \sqrt{2}} + \sqrt{18 - 8 \sqrt{2}}$$
=
   _____________      ______________
  /         ___      /          ___ 
\/  3 - 2*\/ 2   + \/  18 - 8*\/ 2  
$$\sqrt{3 - 2 \sqrt{2}} + \sqrt{18 - 8 \sqrt{2}}$$
sqrt(3 - 2*sqrt(2)) + sqrt(18 - 8*sqrt(2))
Rapid solution [src]
        _____________      ______________
       /         ___      /          ___ 
x1 = \/  3 - 2*\/ 2   + \/  18 - 8*\/ 2  
$$x_{1} = \sqrt{3 - 2 \sqrt{2}} + \sqrt{18 - 8 \sqrt{2}}$$
x1 = sqrt(3 - 2*sqrt(2)) + sqrt(18 - 8*sqrt(2))
Numerical answer [src]
x1 = 3.0
x1 = 3.0