Mister Exam

Other calculators

(sqrt(5)*b/2+4(sqrt(3)+3))^2=(b+6*(1+sqrt(3)))^2+(b/2+2*(sqrt(3)+3))^2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
                         2                                              
/  ___                  \                       2                      2
|\/ 5 *b     /  ___    \|    /      /      ___\\    /b     /  ___    \\ 
|------- + 4*\\/ 3  + 3/|  = \b + 6*\1 + \/ 3 //  + |- + 2*\\/ 3  + 3/| 
\   2                   /                           \2                / 
$$\left(\frac{\sqrt{5} b}{2} + 4 \left(\sqrt{3} + 3\right)\right)^{2} = \left(b + 6 \left(1 + \sqrt{3}\right)\right)^{2} + \left(\frac{b}{2} + 2 \left(\sqrt{3} + 3\right)\right)^{2}$$
Detail solution
Given the equation:
(sqrt(5)*b/2+4*(sqrt(3)+3))^2 = (b+6*(1+sqrt(3)))^2+(b/2+2*(sqrt(3)+3))^2

Expand expressions:
192 + 96*sqrt(3) + 5*b^2/4 + 4*b*sqrt(15) + 12*b*sqrt(5) = (b+6*(1+sqrt(3)))^2+(b/2+2*(sqrt(3)+3))^2

(sqrt(5)*b/2+4*(sqrt(3)+3))^2 = 144 + b^2 + 12*b + 72*sqrt(3) + 12*b*sqrt(3) + (b/2 + 2*(sqrt(3) + 3))^2

(sqrt(5)*b/2+4*(sqrt(3)+3))^2 = 144 + b^2 + 12*b + 72*sqrt(3) + 12*b*sqrt(3) + 48 + 6*b + 24*sqrt(3) + b^2/4 + 2*b*sqrt(3)

Reducing, you get:
-18*b - 14*b*sqrt(3) + 4*b*sqrt(15) + 12*b*sqrt(5) = 0

Expand brackets in the left part
-18*b - 14*b*sqrt3 + 4*b*sqrt15 + 12*b*sqrt5 = 0

Divide both parts of the equation by (-18*b - 14*b*sqrt(3) + 4*b*sqrt(15) + 12*b*sqrt(5))/b
b = 0 / ((-18*b - 14*b*sqrt(3) + 4*b*sqrt(15) + 12*b*sqrt(5))/b)

We get the answer: b = 0
The graph
Sum and product of roots [src]
sum
0
$$0$$
=
0
$$0$$
product
1
$$1$$
=
1
$$1$$
1