sqrt3(x+25)=5 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
$$\left(x + 25\right)^{0.333333333333333} = 5$$
Because equation degree is equal to = 0.333333333333333 - does not contain even numbers in the numerator, then
the equation has single real root.
We raise the equation sides to 3-th degree:
We get:
$$\left(\left(x + 25\right)^{0.333333333333333}\right)^{3} = 5^{3}$$
or
$$x + 25 = 125$$
Move free summands (without x)
from left part to right part, we given:
$$x = 100$$
We get the answer: x = 100
The final answer:
$$x_{1} = 100$$
Sum and product of roots
[src]
$$100.0$$
$$100.0$$
$$100.0$$
$$100.0$$