Mister Exam

Other calculators


16^(x-9)=1/2

16^(x-9)=1/2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
  x - 9      
16      = 1/2
$$16^{x - 9} = \frac{1}{2}$$
Detail solution
Given the equation:
$$16^{x - 9} = \frac{1}{2}$$
or
$$16^{x - 9} - \frac{1}{2} = 0$$
or
$$\frac{16^{x}}{68719476736} = \frac{1}{2}$$
or
$$16^{x} = 34359738368$$
- this is the simplest exponential equation
Do replacement
$$v = 16^{x}$$
we get
$$v - 34359738368 = 0$$
or
$$v - 34359738368 = 0$$
Move free summands (without v)
from left part to right part, we given:
$$v = 34359738368$$
We get the answer: v = 34359738368
do backward replacement
$$16^{x} = v$$
or
$$x = \frac{\log{\left(v \right)}}{\log{\left(16 \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(34359738368 \right)}}{\log{\left(16 \right)}} = \frac{35}{4}$$
The graph
Rapid solution [src]
x1 = 35/4
$$x_{1} = \frac{35}{4}$$
     log(34359738368)     pi*I  
x2 = ---------------- - --------
         4*log(2)       2*log(2)
$$x_{2} = \frac{\log{\left(34359738368 \right)}}{4 \log{\left(2 \right)}} - \frac{i \pi}{2 \log{\left(2 \right)}}$$
     log(34359738368)     pi*I  
x3 = ---------------- + --------
         4*log(2)       2*log(2)
$$x_{3} = \frac{\log{\left(34359738368 \right)}}{4 \log{\left(2 \right)}} + \frac{i \pi}{2 \log{\left(2 \right)}}$$
     35    pi*I 
x4 = -- + ------
     4    log(2)
$$x_{4} = \frac{35}{4} + \frac{i \pi}{\log{\left(2 \right)}}$$
x4 = 35/4 + i*pi/log(2)
Sum and product of roots [src]
sum
35   log(34359738368)     pi*I     log(34359738368)     pi*I     35    pi*I 
-- + ---------------- - -------- + ---------------- + -------- + -- + ------
4        4*log(2)       2*log(2)       4*log(2)       2*log(2)   4    log(2)
$$\left(\left(\frac{35}{4} + \left(\frac{\log{\left(34359738368 \right)}}{4 \log{\left(2 \right)}} - \frac{i \pi}{2 \log{\left(2 \right)}}\right)\right) + \left(\frac{\log{\left(34359738368 \right)}}{4 \log{\left(2 \right)}} + \frac{i \pi}{2 \log{\left(2 \right)}}\right)\right) + \left(\frac{35}{4} + \frac{i \pi}{\log{\left(2 \right)}}\right)$$
=
35   log(34359738368)    pi*I 
-- + ---------------- + ------
2        2*log(2)       log(2)
$$\frac{35}{2} + \frac{\log{\left(34359738368 \right)}}{2 \log{\left(2 \right)}} + \frac{i \pi}{\log{\left(2 \right)}}$$
product
   /log(34359738368)     pi*I  \                                            
35*|---------------- - --------|                                            
   \    4*log(2)       2*log(2)/ /log(34359738368)     pi*I  \ /35    pi*I \
--------------------------------*|---------------- + --------|*|-- + ------|
               4                 \    4*log(2)       2*log(2)/ \4    log(2)/
$$\frac{35 \left(\frac{\log{\left(34359738368 \right)}}{4 \log{\left(2 \right)}} - \frac{i \pi}{2 \log{\left(2 \right)}}\right)}{4} \left(\frac{\log{\left(34359738368 \right)}}{4 \log{\left(2 \right)}} + \frac{i \pi}{2 \log{\left(2 \right)}}\right) \left(\frac{35}{4} + \frac{i \pi}{\log{\left(2 \right)}}\right)$$
=
35*(-2*pi*I + log(34359738368))*(2*pi*I + log(34359738368))*(4*pi*I + log(34359738368))
---------------------------------------------------------------------------------------
                                             3                                         
                                      256*log (2)                                      
$$\frac{35 \left(\log{\left(34359738368 \right)} - 2 i \pi\right) \left(\log{\left(34359738368 \right)} + 2 i \pi\right) \left(\log{\left(34359738368 \right)} + 4 i \pi\right)}{256 \log{\left(2 \right)}^{3}}$$
35*(-2*pi*i + log(34359738368))*(2*pi*i + log(34359738368))*(4*pi*i + log(34359738368))/(256*log(2)^3)
Numerical answer [src]
x1 = 8.75
x2 = 8.75 - 2.2661800709136*i
x3 = 8.75 + 2.2661800709136*i
x4 = 8.75 + 4.53236014182719*i
x4 = 8.75 + 4.53236014182719*i
The graph
16^(x-9)=1/2 equation