Mister Exam

Other calculators


6^x-5=36

6^x-5=36 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 x         
6  - 5 = 36
$$6^{x} - 5 = 36$$
Detail solution
Given the equation:
$$6^{x} - 5 = 36$$
or
$$\left(6^{x} - 5\right) - 36 = 0$$
or
$$6^{x} = 41$$
or
$$6^{x} = 41$$
- this is the simplest exponential equation
Do replacement
$$v = 6^{x}$$
we get
$$v - 41 = 0$$
or
$$v - 41 = 0$$
Move free summands (without v)
from left part to right part, we given:
$$v = 41$$
We get the answer: v = 41
do backward replacement
$$6^{x} = v$$
or
$$x = \frac{\log{\left(v \right)}}{\log{\left(6 \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(41 \right)}}{\log{\left(6 \right)}} = \frac{\log{\left(41 \right)}}{\log{\left(6 \right)}}$$
The graph
Sum and product of roots [src]
sum
log(41)
-------
 log(6)
$$\frac{\log{\left(41 \right)}}{\log{\left(6 \right)}}$$
=
log(41)
-------
 log(6)
$$\frac{\log{\left(41 \right)}}{\log{\left(6 \right)}}$$
product
log(41)
-------
 log(6)
$$\frac{\log{\left(41 \right)}}{\log{\left(6 \right)}}$$
=
log(41)
-------
 log(6)
$$\frac{\log{\left(41 \right)}}{\log{\left(6 \right)}}$$
log(41)/log(6)
Rapid solution [src]
     log(41)
x1 = -------
      log(6)
$$x_{1} = \frac{\log{\left(41 \right)}}{\log{\left(6 \right)}}$$
x1 = log(41)/log(6)
Numerical answer [src]
x1 = 2.07258403289155
x1 = 2.07258403289155
The graph
6^x-5=36 equation