6*x-2*y=4 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
6*x-2*y = 4
Looking for similar summands in the left part:
-2*y + 6*x = 4
Move the summands with the other variables
from left part to right part, we given:
$$6 x = 2 y + 4$$
Divide both parts of the equation by 6
x = 4 + 2*y / (6)
We get the answer: x = 2/3 + y/3
2 re(y) I*im(y)
x1 = - + ----- + -------
3 3 3
$$x_{1} = \frac{\operatorname{re}{\left(y\right)}}{3} + \frac{i \operatorname{im}{\left(y\right)}}{3} + \frac{2}{3}$$
x1 = re(y)/3 + i*im(y)/3 + 2/3
Sum and product of roots
[src]
2 re(y) I*im(y)
- + ----- + -------
3 3 3
$$\frac{\operatorname{re}{\left(y\right)}}{3} + \frac{i \operatorname{im}{\left(y\right)}}{3} + \frac{2}{3}$$
2 re(y) I*im(y)
- + ----- + -------
3 3 3
$$\frac{\operatorname{re}{\left(y\right)}}{3} + \frac{i \operatorname{im}{\left(y\right)}}{3} + \frac{2}{3}$$
2 re(y) I*im(y)
- + ----- + -------
3 3 3
$$\frac{\operatorname{re}{\left(y\right)}}{3} + \frac{i \operatorname{im}{\left(y\right)}}{3} + \frac{2}{3}$$
2 re(y) I*im(y)
- + ----- + -------
3 3 3
$$\frac{\operatorname{re}{\left(y\right)}}{3} + \frac{i \operatorname{im}{\left(y\right)}}{3} + \frac{2}{3}$$
2/3 + re(y)/3 + i*im(y)/3