sinx/2=8 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
$$\frac{\sin{\left(x \right)}}{2} = 8$$
- this is the simplest trigonometric equation
Divide both parts of the equation by 1/2
The equation is transformed to
$$\sin{\left(x \right)} = 16$$
As right part of the equation
modulo =
True
but sin
can no be more than 1 or less than -1
so the solution of the equation d'not exist.
Sum and product of roots
[src]
pi - re(asin(16)) - I*im(asin(16)) + I*im(asin(16)) + re(asin(16))
$$\left(\operatorname{re}{\left(\operatorname{asin}{\left(16 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(16 \right)}\right)}\right) + \left(- \operatorname{re}{\left(\operatorname{asin}{\left(16 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(16 \right)}\right)}\right)$$
$$\pi$$
(pi - re(asin(16)) - I*im(asin(16)))*(I*im(asin(16)) + re(asin(16)))
$$\left(\operatorname{re}{\left(\operatorname{asin}{\left(16 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(16 \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(16 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(16 \right)}\right)}\right)$$
-(I*im(asin(16)) + re(asin(16)))*(-pi + I*im(asin(16)) + re(asin(16)))
$$- \left(\operatorname{re}{\left(\operatorname{asin}{\left(16 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(16 \right)}\right)}\right) \left(- \pi + \operatorname{re}{\left(\operatorname{asin}{\left(16 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(16 \right)}\right)}\right)$$
-(i*im(asin(16)) + re(asin(16)))*(-pi + i*im(asin(16)) + re(asin(16)))
x1 = pi - re(asin(16)) - I*im(asin(16))
$$x_{1} = - \operatorname{re}{\left(\operatorname{asin}{\left(16 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(16 \right)}\right)}$$
x2 = I*im(asin(16)) + re(asin(16))
$$x_{2} = \operatorname{re}{\left(\operatorname{asin}{\left(16 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(16 \right)}\right)}$$
x2 = re(asin(16)) + i*im(asin(16))
x1 = 1.5707963267949 + 3.46475790667586*i
x2 = 1.5707963267949 - 3.46475790667586*i
x2 = 1.5707963267949 - 3.46475790667586*i