Mister Exam

Other calculators

sin(2x/7)=-√2/2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
              ___ 
   /2*x\   -\/ 2  
sin|---| = -------
   \ 7 /      2   
$$\sin{\left(\frac{2 x}{7} \right)} = \frac{\left(-1\right) \sqrt{2}}{2}$$
Detail solution
Given the equation
$$\sin{\left(\frac{2 x}{7} \right)} = \frac{\left(-1\right) \sqrt{2}}{2}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$\frac{2 x}{7} = 2 \pi n + \operatorname{asin}{\left(- \frac{\sqrt{2}}{2} \right)}$$
$$\frac{2 x}{7} = 2 \pi n - \operatorname{asin}{\left(- \frac{\sqrt{2}}{2} \right)} + \pi$$
Or
$$\frac{2 x}{7} = 2 \pi n - \frac{\pi}{4}$$
$$\frac{2 x}{7} = 2 \pi n + \frac{5 \pi}{4}$$
, where n - is a integer
Divide both parts of the equation by
$$\frac{2}{7}$$
we get the answer:
$$x_{1} = 7 \pi n - \frac{7 \pi}{8}$$
$$x_{2} = 7 \pi n + \frac{35 \pi}{8}$$
The graph
Sum and product of roots [src]
sum
  7*pi   35*pi
- ---- + -----
   8       8  
$$- \frac{7 \pi}{8} + \frac{35 \pi}{8}$$
=
7*pi
----
 2  
$$\frac{7 \pi}{2}$$
product
-7*pi 35*pi
-----*-----
  8     8  
$$- \frac{7 \pi}{8} \frac{35 \pi}{8}$$
=
       2
-245*pi 
--------
   64   
$$- \frac{245 \pi^{2}}{64}$$
-245*pi^2/64
Rapid solution [src]
     -7*pi
x1 = -----
       8  
$$x_{1} = - \frac{7 \pi}{8}$$
     35*pi
x2 = -----
       8  
$$x_{2} = \frac{35 \pi}{8}$$
x2 = 35*pi/8
Numerical answer [src]
x1 = 63.2245521534946
x2 = 19.2422550032375
x3 = -74.2201264410589
x4 = -68.7223392972767
x5 = -2.74889357189107
x6 = 343.611696486384
x7 = -90.7134878724053
x8 = -96.2112750161874
x9 = 79.717913584841
x10 = 85.2157007286231
x11 = -46.7311907221482
x12 = 101.70906215997
x13 = 41.233403578366
x14 = 123.700210735098
x15 = 35.7356164345839
x16 = -8.24668071567321
x17 = 57.7267650097125
x18 = -24.7400421470196
x19 = 13.7444678594553
x20 = -52.2289778659303
x21 = -30.2378292908018
x21 = -30.2378292908018