sin(4*x+p/3)=0 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
sin(3p+4x)=0- this is the simplest trigonometric equation
with the change of sign in 0
We get:
sin(3p+4x)=0This equation is transformed to
3p+4x=2πn+asin(0)3p+4x=2πn−asin(0)+πOr
3p+4x=2πn3p+4x=2πn+π, where n - is a integer
Move
3pto right part of the equation
with the opposite sign, in total:
4x=2πn−3p4x=2πn−3p+πDivide both parts of the equation by
4we get the answer:
x1=2πn−12px2=2πn−12p+4π
re(p) I*im(p)
x1 = - ----- - -------
12 12
x1=−12re(p)−12iim(p)
re(p) pi I*im(p)
x2 = - ----- + -- - -------
12 4 12
x2=−12re(p)−12iim(p)+4π
x2 = -re(p)/12 - i*im(p)/12 + pi/4
Sum and product of roots
[src]
re(p) I*im(p) re(p) pi I*im(p)
- ----- - ------- + - ----- + -- - -------
12 12 12 4 12
(−12re(p)−12iim(p))+(−12re(p)−12iim(p)+4π)
re(p) pi I*im(p)
- ----- + -- - -------
6 4 6
−6re(p)−6iim(p)+4π
/ re(p) I*im(p)\ / re(p) pi I*im(p)\
|- ----- - -------|*|- ----- + -- - -------|
\ 12 12 / \ 12 4 12 /
(−12re(p)−12iim(p))(−12re(p)−12iim(p)+4π)
(I*im(p) + re(p))*(-3*pi + I*im(p) + re(p))
-------------------------------------------
144
144(re(p)+iim(p))(re(p)+iim(p)−3π)
(i*im(p) + re(p))*(-3*pi + i*im(p) + re(p))/144