Expand the expression in the equation
$$\frac{73 \left(x - 15\right)}{10} \left(x + 30\right) = 0$$
We get the quadratic equation
$$\frac{73 x^{2}}{10} + \frac{219 x}{2} - 3285 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0
A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = \frac{73}{10}$$
$$b = \frac{219}{2}$$
$$c = -3285$$
, then
D = b^2 - 4 * a * c =
(219/2)^2 - 4 * (73/10) * (-3285) = 431649/4
Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
or
$$x_{1} = 15$$
$$x_{2} = -30$$