Mister Exam

Other calculators

1,5*x^2+20*x+71=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2                
3*x                 
---- + 20*x + 71 = 0
 2                  
$$\left(\frac{3 x^{2}}{2} + 20 x\right) + 71 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = \frac{3}{2}$$
$$b = 20$$
$$c = 71$$
, then
D = b^2 - 4 * a * c = 

(20)^2 - 4 * (3/2) * (71) = -26

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = - \frac{20}{3} + \frac{\sqrt{26} i}{3}$$
$$x_{2} = - \frac{20}{3} - \frac{\sqrt{26} i}{3}$$
Vieta's Theorem
rewrite the equation
$$\left(\frac{3 x^{2}}{2} + 20 x\right) + 71 = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} + \frac{40 x}{3} + \frac{142}{3} = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = \frac{40}{3}$$
$$q = \frac{c}{a}$$
$$q = \frac{142}{3}$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = - \frac{40}{3}$$
$$x_{1} x_{2} = \frac{142}{3}$$
The graph
Rapid solution [src]
                ____
       20   I*\/ 26 
x1 = - -- - --------
       3       3    
$$x_{1} = - \frac{20}{3} - \frac{\sqrt{26} i}{3}$$
                ____
       20   I*\/ 26 
x2 = - -- + --------
       3       3    
$$x_{2} = - \frac{20}{3} + \frac{\sqrt{26} i}{3}$$
x2 = -20/3 + sqrt(26)*i/3
Sum and product of roots [src]
sum
           ____              ____
  20   I*\/ 26      20   I*\/ 26 
- -- - -------- + - -- + --------
  3       3         3       3    
$$\left(- \frac{20}{3} - \frac{\sqrt{26} i}{3}\right) + \left(- \frac{20}{3} + \frac{\sqrt{26} i}{3}\right)$$
=
-40/3
$$- \frac{40}{3}$$
product
/           ____\ /           ____\
|  20   I*\/ 26 | |  20   I*\/ 26 |
|- -- - --------|*|- -- + --------|
\  3       3    / \  3       3    /
$$\left(- \frac{20}{3} - \frac{\sqrt{26} i}{3}\right) \left(- \frac{20}{3} + \frac{\sqrt{26} i}{3}\right)$$
=
142/3
$$\frac{142}{3}$$
142/3
Numerical answer [src]
x1 = -6.66666666666667 - 1.69967317119759*i
x2 = -6.66666666666667 + 1.69967317119759*i
x2 = -6.66666666666667 + 1.69967317119759*i