1,11^(x)=2 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation:
$$\left(\frac{111}{100}\right)^{x} = 2$$
or
$$\left(\frac{111}{100}\right)^{x} - 2 = 0$$
or
$$\left(\frac{111}{100}\right)^{x} = 2$$
or
$$\left(\frac{111}{100}\right)^{x} = 2$$
- this is the simplest exponential equation
Do replacement
$$v = \left(\frac{111}{100}\right)^{x}$$
we get
$$v - 2 = 0$$
or
$$v - 2 = 0$$
Move free summands (without v)
from left part to right part, we given:
$$v = 2$$
We get the answer: v = 2
do backward replacement
$$\left(\frac{111}{100}\right)^{x} = v$$
or
$$x = \frac{\log{\left(v \right)}}{\log{\left(\frac{111}{100} \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(2 \right)}}{\log{\left(\frac{111}{100} \right)}} = \log{\left(2^{\frac{1}{\log{\left(\frac{111}{100} \right)}}} \right)}$$
/ 1 \
| --------|
| /111\|
| log|---||
| \100/|
x1 = log\2 /
$$x_{1} = \log{\left(2^{\frac{1}{\log{\left(\frac{111}{100} \right)}}} \right)}$$
x1 = log(2^(1/log(111/100)))
Sum and product of roots
[src]
/ 1 \
| --------|
| /111\|
| log|---||
| \100/|
log\2 /
$$\log{\left(2^{\frac{1}{\log{\left(\frac{111}{100} \right)}}} \right)}$$
/ 1 \
| --------|
| /111\|
| log|---||
| \100/|
log\2 /
$$\log{\left(2^{\frac{1}{\log{\left(\frac{111}{100} \right)}}} \right)}$$
/ 1 \
| --------|
| /111\|
| log|---||
| \100/|
log\2 /
$$\log{\left(2^{\frac{1}{\log{\left(\frac{111}{100} \right)}}} \right)}$$
/ 1 \
| --------|
| /111\|
| log|---||
| \100/|
log\2 /
$$\log{\left(2^{\frac{1}{\log{\left(\frac{111}{100} \right)}}} \right)}$$