Mister Exam

Other calculators

1,11^(x)=2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
     x    
/111\     
|---|  = 2
\100/     
$$\left(\frac{111}{100}\right)^{x} = 2$$
Detail solution
Given the equation:
$$\left(\frac{111}{100}\right)^{x} = 2$$
or
$$\left(\frac{111}{100}\right)^{x} - 2 = 0$$
or
$$\left(\frac{111}{100}\right)^{x} = 2$$
or
$$\left(\frac{111}{100}\right)^{x} = 2$$
- this is the simplest exponential equation
Do replacement
$$v = \left(\frac{111}{100}\right)^{x}$$
we get
$$v - 2 = 0$$
or
$$v - 2 = 0$$
Move free summands (without v)
from left part to right part, we given:
$$v = 2$$
We get the answer: v = 2
do backward replacement
$$\left(\frac{111}{100}\right)^{x} = v$$
or
$$x = \frac{\log{\left(v \right)}}{\log{\left(\frac{111}{100} \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(2 \right)}}{\log{\left(\frac{111}{100} \right)}} = \log{\left(2^{\frac{1}{\log{\left(\frac{111}{100} \right)}}} \right)}$$
The graph
Rapid solution [src]
        /    1    \
        | --------|
        |    /111\|
        | log|---||
        |    \100/|
x1 = log\2        /
$$x_{1} = \log{\left(2^{\frac{1}{\log{\left(\frac{111}{100} \right)}}} \right)}$$
x1 = log(2^(1/log(111/100)))
Sum and product of roots [src]
sum
   /    1    \
   | --------|
   |    /111\|
   | log|---||
   |    \100/|
log\2        /
$$\log{\left(2^{\frac{1}{\log{\left(\frac{111}{100} \right)}}} \right)}$$
=
   /    1    \
   | --------|
   |    /111\|
   | log|---||
   |    \100/|
log\2        /
$$\log{\left(2^{\frac{1}{\log{\left(\frac{111}{100} \right)}}} \right)}$$
product
   /    1    \
   | --------|
   |    /111\|
   | log|---||
   |    \100/|
log\2        /
$$\log{\left(2^{\frac{1}{\log{\left(\frac{111}{100} \right)}}} \right)}$$
=
   /    1    \
   | --------|
   |    /111\|
   | log|---||
   |    \100/|
log\2        /
$$\log{\left(2^{\frac{1}{\log{\left(\frac{111}{100} \right)}}} \right)}$$
log(2^(1/log(111/100)))
Numerical answer [src]
x1 = 6.64188461841791
x1 = 6.64188461841791