Mister Exam

Other calculators

(1/2)^(14-5x)=64 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 -14 + 5*x     
2          = 64
$$\left(\frac{1}{2}\right)^{14 - 5 x} = 64$$
Detail solution
Given the equation:
$$\left(\frac{1}{2}\right)^{14 - 5 x} = 64$$
or
$$\left(\frac{1}{2}\right)^{14 - 5 x} - 64 = 0$$
or
$$\frac{32^{x}}{16384} = 64$$
or
$$32^{x} = 1048576$$
- this is the simplest exponential equation
Do replacement
$$v = 32^{x}$$
we get
$$v - 1048576 = 0$$
or
$$v - 1048576 = 0$$
Move free summands (without v)
from left part to right part, we given:
$$v = 1048576$$
We get the answer: v = 1048576
do backward replacement
$$32^{x} = v$$
or
$$x = \frac{\log{\left(v \right)}}{\log{\left(32 \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(1048576 \right)}}{\log{\left(32 \right)}} = 4$$
The graph
Rapid solution [src]
x1 = 4
$$x_{1} = 4$$
     log(1048576)    4*pi*I 
x2 = ------------ - --------
       5*log(2)     5*log(2)
$$x_{2} = \frac{\log{\left(1048576 \right)}}{5 \log{\left(2 \right)}} - \frac{4 i \pi}{5 \log{\left(2 \right)}}$$
     log(1048576)    2*pi*I 
x3 = ------------ - --------
       5*log(2)     5*log(2)
$$x_{3} = \frac{\log{\left(1048576 \right)}}{5 \log{\left(2 \right)}} - \frac{2 i \pi}{5 \log{\left(2 \right)}}$$
     log(1048576)    2*pi*I 
x4 = ------------ + --------
       5*log(2)     5*log(2)
$$x_{4} = \frac{\log{\left(1048576 \right)}}{5 \log{\left(2 \right)}} + \frac{2 i \pi}{5 \log{\left(2 \right)}}$$
     log(1048576)    4*pi*I 
x5 = ------------ + --------
       5*log(2)     5*log(2)
$$x_{5} = \frac{\log{\left(1048576 \right)}}{5 \log{\left(2 \right)}} + \frac{4 i \pi}{5 \log{\left(2 \right)}}$$
x5 = log(1048576)/(5*log(2)) + 4*i*pi/(5*log(2))
Sum and product of roots [src]
sum
    log(1048576)    4*pi*I    log(1048576)    2*pi*I    log(1048576)    2*pi*I    log(1048576)    4*pi*I 
4 + ------------ - -------- + ------------ - -------- + ------------ + -------- + ------------ + --------
      5*log(2)     5*log(2)     5*log(2)     5*log(2)     5*log(2)     5*log(2)     5*log(2)     5*log(2)
$$\left(\left(\left(4 + \left(\frac{\log{\left(1048576 \right)}}{5 \log{\left(2 \right)}} - \frac{4 i \pi}{5 \log{\left(2 \right)}}\right)\right) + \left(\frac{\log{\left(1048576 \right)}}{5 \log{\left(2 \right)}} - \frac{2 i \pi}{5 \log{\left(2 \right)}}\right)\right) + \left(\frac{\log{\left(1048576 \right)}}{5 \log{\left(2 \right)}} + \frac{2 i \pi}{5 \log{\left(2 \right)}}\right)\right) + \left(\frac{\log{\left(1048576 \right)}}{5 \log{\left(2 \right)}} + \frac{4 i \pi}{5 \log{\left(2 \right)}}\right)$$
=
    4*log(1048576)
4 + --------------
       5*log(2)   
$$4 + \frac{4 \log{\left(1048576 \right)}}{5 \log{\left(2 \right)}}$$
product
  /log(1048576)    4*pi*I \ /log(1048576)    2*pi*I \ /log(1048576)    2*pi*I \ /log(1048576)    4*pi*I \
4*|------------ - --------|*|------------ - --------|*|------------ + --------|*|------------ + --------|
  \  5*log(2)     5*log(2)/ \  5*log(2)     5*log(2)/ \  5*log(2)     5*log(2)/ \  5*log(2)     5*log(2)/
$$4 \left(\frac{\log{\left(1048576 \right)}}{5 \log{\left(2 \right)}} - \frac{4 i \pi}{5 \log{\left(2 \right)}}\right) \left(\frac{\log{\left(1048576 \right)}}{5 \log{\left(2 \right)}} - \frac{2 i \pi}{5 \log{\left(2 \right)}}\right) \left(\frac{\log{\left(1048576 \right)}}{5 \log{\left(2 \right)}} + \frac{2 i \pi}{5 \log{\left(2 \right)}}\right) \left(\frac{\log{\left(1048576 \right)}}{5 \log{\left(2 \right)}} + \frac{4 i \pi}{5 \log{\left(2 \right)}}\right)$$
=
              2            4  
        256*pi       256*pi   
1024 + --------- + -----------
            2             4   
       5*log (2)   625*log (2)
$$\frac{256 \pi^{4}}{625 \log{\left(2 \right)}^{4}} + 1024 + \frac{256 \pi^{2}}{5 \log{\left(2 \right)}^{2}}$$
1024 + 256*pi^2/(5*log(2)^2) + 256*pi^4/(625*log(2)^4)
Numerical answer [src]
x1 = 4.0
x2 = 4.0 - 3.62588811346175*i
x3 = 4.0 - 1.81294405673088*i
x4 = 4.0 + 1.81294405673088*i
x5 = 4.0 + 3.62588811346175*i
x5 = 4.0 + 3.62588811346175*i