(1/3)^x-4=27 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation:
$$-4 + \left(\frac{1}{3}\right)^{x} = 27$$
or
$$\left(-4 + \left(\frac{1}{3}\right)^{x}\right) - 27 = 0$$
or
$$\left(\frac{1}{3}\right)^{x} = 31$$
or
$$\left(\frac{1}{3}\right)^{x} = 31$$
- this is the simplest exponential equation
Do replacement
$$v = \left(\frac{1}{3}\right)^{x}$$
we get
$$v - 31 = 0$$
or
$$v - 31 = 0$$
Move free summands (without v)
from left part to right part, we given:
$$v = 31$$
We get the answer: v = 31
do backward replacement
$$\left(\frac{1}{3}\right)^{x} = v$$
or
$$x = - \frac{\log{\left(v \right)}}{\log{\left(3 \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(31 \right)}}{\log{\left(\frac{1}{3} \right)}} = - \frac{\log{\left(31 \right)}}{\log{\left(3 \right)}}$$
Sum and product of roots
[src]
-log(31)
---------
log(3)
$$- \frac{\log{\left(31 \right)}}{\log{\left(3 \right)}}$$
-log(31)
---------
log(3)
$$- \frac{\log{\left(31 \right)}}{\log{\left(3 \right)}}$$
-log(31)
---------
log(3)
$$- \frac{\log{\left(31 \right)}}{\log{\left(3 \right)}}$$
-log(31)
---------
log(3)
$$- \frac{\log{\left(31 \right)}}{\log{\left(3 \right)}}$$
-log(31)
x1 = ---------
log(3)
$$x_{1} = - \frac{\log{\left(31 \right)}}{\log{\left(3 \right)}}$$