Mister Exam

Other calculators

(1/3)^x-4=27 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 -x         
3   - 4 = 27
$$-4 + \left(\frac{1}{3}\right)^{x} = 27$$
Detail solution
Given the equation:
$$-4 + \left(\frac{1}{3}\right)^{x} = 27$$
or
$$\left(-4 + \left(\frac{1}{3}\right)^{x}\right) - 27 = 0$$
or
$$\left(\frac{1}{3}\right)^{x} = 31$$
or
$$\left(\frac{1}{3}\right)^{x} = 31$$
- this is the simplest exponential equation
Do replacement
$$v = \left(\frac{1}{3}\right)^{x}$$
we get
$$v - 31 = 0$$
or
$$v - 31 = 0$$
Move free summands (without v)
from left part to right part, we given:
$$v = 31$$
We get the answer: v = 31
do backward replacement
$$\left(\frac{1}{3}\right)^{x} = v$$
or
$$x = - \frac{\log{\left(v \right)}}{\log{\left(3 \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(31 \right)}}{\log{\left(\frac{1}{3} \right)}} = - \frac{\log{\left(31 \right)}}{\log{\left(3 \right)}}$$
The graph
Sum and product of roots [src]
sum
-log(31) 
---------
  log(3) 
$$- \frac{\log{\left(31 \right)}}{\log{\left(3 \right)}}$$
=
-log(31) 
---------
  log(3) 
$$- \frac{\log{\left(31 \right)}}{\log{\left(3 \right)}}$$
product
-log(31) 
---------
  log(3) 
$$- \frac{\log{\left(31 \right)}}{\log{\left(3 \right)}}$$
=
-log(31) 
---------
  log(3) 
$$- \frac{\log{\left(31 \right)}}{\log{\left(3 \right)}}$$
-log(31)/log(3)
Rapid solution [src]
     -log(31) 
x1 = ---------
       log(3) 
$$x_{1} = - \frac{\log{\left(31 \right)}}{\log{\left(3 \right)}}$$
x1 = -log(31)/log(3)
Numerical answer [src]
x1 = -3.12574985725702
x1 = -3.12574985725702