Mister Exam

Other calculators

1/3c+5=17-1/6x equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
c            x
- + 5 = 17 - -
3            6
$$\frac{c}{3} + 5 = 17 - \frac{x}{6}$$
Detail solution
Given the linear equation:
1/3*c+5 = 17-1/6*x

Move free summands (without x)
from left part to right part, we given:
$$\frac{c}{3} = 12 - \frac{x}{6}$$
Move the summands with the unknown x
from the right part to the left part:
$$\frac{c}{3} + \frac{x}{6} = 12$$
Divide both parts of the equation by (c/3 + x/6)/x
x = 12 / ((c/3 + x/6)/x)

We get the answer: x = 72 - 2*c
The graph
Sum and product of roots [src]
sum
72 - 2*re(c) - 2*I*im(c)
$$- 2 \operatorname{re}{\left(c\right)} - 2 i \operatorname{im}{\left(c\right)} + 72$$
=
72 - 2*re(c) - 2*I*im(c)
$$- 2 \operatorname{re}{\left(c\right)} - 2 i \operatorname{im}{\left(c\right)} + 72$$
product
72 - 2*re(c) - 2*I*im(c)
$$- 2 \operatorname{re}{\left(c\right)} - 2 i \operatorname{im}{\left(c\right)} + 72$$
=
72 - 2*re(c) - 2*I*im(c)
$$- 2 \operatorname{re}{\left(c\right)} - 2 i \operatorname{im}{\left(c\right)} + 72$$
72 - 2*re(c) - 2*i*im(c)
Rapid solution [src]
x1 = 72 - 2*re(c) - 2*I*im(c)
$$x_{1} = - 2 \operatorname{re}{\left(c\right)} - 2 i \operatorname{im}{\left(c\right)} + 72$$
x1 = -2*re(c) - 2*i*im(c) + 72