Mister Exam

Other calculators

1/(2x-y)=-1 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   1        
------- = -1
2*x - y     
$$\frac{1}{2 x - y} = -1$$
Detail solution
Given the equation:
$$\frac{1}{2 x - y} = -1$$
Use proportions rule:
From a1/b1 = a2/b2 should a1*b2 = a2*b1,
In this case
a1 = 1

b1 = -y + 2*x

a2 = 1

b2 = -1

so we get the equation
$$-1 = 2 x - y$$
$$-1 = 2 x - y$$
Looking for similar summands in the right part:
-1 = -y + 2*x

Move free summands (without x)
from left part to right part, we given:
$$0 = 2 x - y + 1$$
Divide both parts of the equation by 0
x = 1 - y + 2*x / (0)

We get the answer: x = -1/2 + y/2
The graph
Rapid solution [src]
       1   re(y)   I*im(y)
x1 = - - + ----- + -------
       2     2        2   
$$x_{1} = \frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2} - \frac{1}{2}$$
x1 = re(y)/2 + i*im(y)/2 - 1/2
Sum and product of roots [src]
sum
  1   re(y)   I*im(y)
- - + ----- + -------
  2     2        2   
$$\frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2} - \frac{1}{2}$$
=
  1   re(y)   I*im(y)
- - + ----- + -------
  2     2        2   
$$\frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2} - \frac{1}{2}$$
product
  1   re(y)   I*im(y)
- - + ----- + -------
  2     2        2   
$$\frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2} - \frac{1}{2}$$
=
  1   re(y)   I*im(y)
- - + ----- + -------
  2     2        2   
$$\frac{\operatorname{re}{\left(y\right)}}{2} + \frac{i \operatorname{im}{\left(y\right)}}{2} - \frac{1}{2}$$
-1/2 + re(y)/2 + i*im(y)/2