Mister Exam

Other calculators

(15x-1)(6x+1,2)=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
(15*x - 1)*(6*x + 6/5) = 0
(6x+65)(15x1)=0\left(6 x + \frac{6}{5}\right) \left(15 x - 1\right) = 0
Detail solution
Expand the expression in the equation
(6x+65)(15x1)=0\left(6 x + \frac{6}{5}\right) \left(15 x - 1\right) = 0
We get the quadratic equation
90x2+12x65=090 x^{2} + 12 x - \frac{6}{5} = 0
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
where D = b^2 - 4*a*c - it is the discriminant.
Because
a=90a = 90
b=12b = 12
c=65c = - \frac{6}{5}
, then
D = b^2 - 4 * a * c = 

(12)^2 - 4 * (90) * (-6/5) = 576

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
x1=115x_{1} = \frac{1}{15}
x2=15x_{2} = - \frac{1}{5}
Rapid solution [src]
x1 = -1/5
x1=15x_{1} = - \frac{1}{5}
x2 = 1/15
x2=115x_{2} = \frac{1}{15}
x2 = 1/15
Sum and product of roots [src]
sum
-1/5 + 1/15
15+115- \frac{1}{5} + \frac{1}{15}
=
-2/15
215- \frac{2}{15}
product
-1  
----
5*15
175- \frac{1}{75}
=
-1/75
175- \frac{1}{75}
-1/75
Numerical answer [src]
x1 = -0.2
x2 = 0.0666666666666667
x2 = 0.0666666666666667