Mister Exam

Other calculators


9*x^2-4=0

9*x^2-4=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2        
9*x  - 4 = 0
$$9 x^{2} - 4 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 9$$
$$b = 0$$
$$c = -4$$
, then
D = b^2 - 4 * a * c = 

(0)^2 - 4 * (9) * (-4) = 144

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{2}{3}$$
$$x_{2} = - \frac{2}{3}$$
Vieta's Theorem
rewrite the equation
$$9 x^{2} - 4 = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} - \frac{4}{9} = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = - \frac{4}{9}$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = 0$$
$$x_{1} x_{2} = - \frac{4}{9}$$
The graph
Sum and product of roots [src]
sum
-2/3 + 2/3
$$- \frac{2}{3} + \frac{2}{3}$$
=
0
$$0$$
product
-2*2
----
3*3 
$$- \frac{4}{9}$$
=
-4/9
$$- \frac{4}{9}$$
-4/9
Rapid solution [src]
x1 = -2/3
$$x_{1} = - \frac{2}{3}$$
x2 = 2/3
$$x_{2} = \frac{2}{3}$$
x2 = 2/3
Numerical answer [src]
x1 = 0.666666666666667
x2 = -0.666666666666667
x2 = -0.666666666666667
The graph
9*x^2-4=0 equation