9(2x-3y)-8(y-x)=0 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
9*(2*x-3*y)-8*(y-x) = 0
Expand brackets in the left part
9*2*x-9*3*y-8*y+8*x = 0
Looking for similar summands in the left part:
-35*y + 26*x = 0
Move the summands with the other variables
from left part to right part, we given:
$$26 x = 35 y$$
Divide both parts of the equation by 26
x = 35*y / (26)
We get the answer: x = 35*y/26
Sum and product of roots
[src]
35*re(y) 35*I*im(y)
-------- + ----------
26 26
$$\frac{35 \operatorname{re}{\left(y\right)}}{26} + \frac{35 i \operatorname{im}{\left(y\right)}}{26}$$
35*re(y) 35*I*im(y)
-------- + ----------
26 26
$$\frac{35 \operatorname{re}{\left(y\right)}}{26} + \frac{35 i \operatorname{im}{\left(y\right)}}{26}$$
35*re(y) 35*I*im(y)
-------- + ----------
26 26
$$\frac{35 \operatorname{re}{\left(y\right)}}{26} + \frac{35 i \operatorname{im}{\left(y\right)}}{26}$$
35*re(y) 35*I*im(y)
-------- + ----------
26 26
$$\frac{35 \operatorname{re}{\left(y\right)}}{26} + \frac{35 i \operatorname{im}{\left(y\right)}}{26}$$
35*re(y)/26 + 35*i*im(y)/26
35*re(y) 35*I*im(y)
x1 = -------- + ----------
26 26
$$x_{1} = \frac{35 \operatorname{re}{\left(y\right)}}{26} + \frac{35 i \operatorname{im}{\left(y\right)}}{26}$$
x1 = 35*re(y)/26 + 35*i*im(y)/26