|x-4|+|x+4|=a equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
For every modulo expressions in the equation
allow cases, when this expressions ">=0" or "<0",
solve the resulting equation.
1.x−4≥0x+4≥0or
4≤x∧x<∞we get the equation
−a+(x−4)+(x+4)=0after simplifying we get
−a+2x=0the solution in this interval:
x1=2a2.x−4≥0x+4<0The inequality system has no solutions, see the next condition
3.x−4<0x+4≥0or
−4≤x∧x<4we get the equation
−a+(4−x)+(x+4)=0after simplifying we get
8−a=0the solution in this interval:
4.x−4<0x+4<0or
−∞<x∧x<−4we get the equation
−a+(4−x)+(−x−4)=0after simplifying we get
−a−2x=0the solution in this interval:
x2=−2aThe final answer:
x1=2ax2=−2a
//-a \ //-a \
||--- for a > 8| ||--- for a > 8|
x1 = I*im|< 2 | + re|< 2 |
|| | || |
\\nan otherwise/ \\nan otherwise/
x1=re({−2aNaNfora>8otherwise)+iim({−2aNaNfora>8otherwise)
// a \ // a \
|| - for a >= 8| || - for a >= 8|
x2 = I*im|< 2 | + re|< 2 |
|| | || |
\\nan otherwise / \\nan otherwise /
x2=re({2aNaNfora≥8otherwise)+iim({2aNaNfora≥8otherwise)
Eq(x2, re(Piecewise((a/2, a >= 8), (nan, True))) + i*im(Piecewise((a/2, a >= 8), (nan, True))))
Sum and product of roots
[src]
//-a \ //-a \ // a \ // a \
||--- for a > 8| ||--- for a > 8| || - for a >= 8| || - for a >= 8|
I*im|< 2 | + re|< 2 | + I*im|< 2 | + re|< 2 |
|| | || | || | || |
\\nan otherwise/ \\nan otherwise/ \\nan otherwise / \\nan otherwise /
(re({−2aNaNfora>8otherwise)+iim({−2aNaNfora>8otherwise))+(re({2aNaNfora≥8otherwise)+iim({2aNaNfora≥8otherwise))
// a \ //-a \ // a \ //-a \
|| - for a >= 8| ||--- for a > 8| || - for a >= 8| ||--- for a > 8|
I*im|< 2 | + I*im|< 2 | + re|< 2 | + re|< 2 |
|| | || | || | || |
\\nan otherwise / \\nan otherwise/ \\nan otherwise / \\nan otherwise/
re({−2aNaNfora>8otherwise)+re({2aNaNfora≥8otherwise)+iim({−2aNaNfora>8otherwise)+iim({2aNaNfora≥8otherwise)
/ //-a \ //-a \\ / // a \ // a \\
| ||--- for a > 8| ||--- for a > 8|| | || - for a >= 8| || - for a >= 8||
|I*im|< 2 | + re|< 2 ||*|I*im|< 2 | + re|< 2 ||
| || | || || | || | || ||
\ \\nan otherwise/ \\nan otherwise// \ \\nan otherwise / \\nan otherwise //
(re({−2aNaNfora>8otherwise)+iim({−2aNaNfora>8otherwise))(re({2aNaNfora≥8otherwise)+iim({2aNaNfora≥8otherwise))
/ 2
|-(I*im(a) + re(a))
|-------------------- for a > 8
< 4
|
| nan otherwise
\
{−4(re(a)+iim(a))2NaNfora>8otherwise
Piecewise((-(i*im(a) + re(a))^2/4, a > 8), (nan, True))