Mister Exam

Other calculators

-x^2+x equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2        
- x  + x = 0
x2+x=0- x^{2} + x = 0
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
where D = b^2 - 4*a*c - it is the discriminant.
Because
a=1a = -1
b=1b = 1
c=0c = 0
, then
D = b^2 - 4 * a * c = 

(1)^2 - 4 * (-1) * (0) = 1

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
x1=0x_{1} = 0
x2=1x_{2} = 1
Vieta's Theorem
rewrite the equation
x2+x=0- x^{2} + x = 0
of
ax2+bx+c=0a x^{2} + b x + c = 0
as reduced quadratic equation
x2+bxa+ca=0x^{2} + \frac{b x}{a} + \frac{c}{a} = 0
x2x=0x^{2} - x = 0
px+q+x2=0p x + q + x^{2} = 0
where
p=bap = \frac{b}{a}
p=1p = -1
q=caq = \frac{c}{a}
q=0q = 0
Vieta Formulas
x1+x2=px_{1} + x_{2} = - p
x1x2=qx_{1} x_{2} = q
x1+x2=1x_{1} + x_{2} = 1
x1x2=0x_{1} x_{2} = 0
The graph
-15.0-12.5-10.0-7.5-5.0-2.50.02.55.07.510.012.515.0-200100
Rapid solution [src]
x1 = 0
x1=0x_{1} = 0
x2 = 1
x2=1x_{2} = 1
x2 = 1
Sum and product of roots [src]
sum
1
11
=
1
11
product
0
00
=
0
00
0
Numerical answer [src]
x1 = 0.0
x2 = 1.0
x2 = 1.0