Mister Exam

Other calculators

-x^2+4x+19 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   2               
- x  + 4*x + 19 = 0
$$\left(- x^{2} + 4 x\right) + 19 = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = -1$$
$$b = 4$$
$$c = 19$$
, then
D = b^2 - 4 * a * c = 

(4)^2 - 4 * (-1) * (19) = 92

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = 2 - \sqrt{23}$$
$$x_{2} = 2 + \sqrt{23}$$
Vieta's Theorem
rewrite the equation
$$\left(- x^{2} + 4 x\right) + 19 = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} - 4 x - 19 = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = -4$$
$$q = \frac{c}{a}$$
$$q = -19$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = 4$$
$$x_{1} x_{2} = -19$$
The graph
Rapid solution [src]
           ____
x1 = 2 - \/ 23 
$$x_{1} = 2 - \sqrt{23}$$
           ____
x2 = 2 + \/ 23 
$$x_{2} = 2 + \sqrt{23}$$
x2 = 2 + sqrt(23)
Sum and product of roots [src]
sum
      ____         ____
2 - \/ 23  + 2 + \/ 23 
$$\left(2 - \sqrt{23}\right) + \left(2 + \sqrt{23}\right)$$
=
4
$$4$$
product
/      ____\ /      ____\
\2 - \/ 23 /*\2 + \/ 23 /
$$\left(2 - \sqrt{23}\right) \left(2 + \sqrt{23}\right)$$
=
-19
$$-19$$
-19
Numerical answer [src]
x1 = -2.79583152331272
x2 = 6.79583152331272
x2 = 6.79583152331272