Mister Exam

Other calculators

-x^3-3*x=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   3          
- x  - 3*x = 0
$$- x^{3} - 3 x = 0$$
Detail solution
Given the equation:
$$- x^{3} - 3 x = 0$$
transform
Take common factor x from the equation
we get:
$$x \left(- x^{2} - 3\right) = 0$$
then:
$$x_{1} = 0$$
and also
we get the equation
$$- x^{2} - 3 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{2} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{3} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = -1$$
$$b = 0$$
$$c = -3$$
, then
D = b^2 - 4 * a * c = 

(0)^2 - 4 * (-1) * (-3) = -12

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x2 = (-b + sqrt(D)) / (2*a)

x3 = (-b - sqrt(D)) / (2*a)

or
$$x_{2} = - \sqrt{3} i$$
$$x_{3} = \sqrt{3} i$$
The final answer for -x^3 - 3*x = 0:
$$x_{1} = 0$$
$$x_{2} = - \sqrt{3} i$$
$$x_{3} = \sqrt{3} i$$
Vieta's Theorem
rewrite the equation
$$- x^{3} - 3 x = 0$$
of
$$a x^{3} + b x^{2} + c x + d = 0$$
as reduced cubic equation
$$x^{3} + \frac{b x^{2}}{a} + \frac{c x}{a} + \frac{d}{a} = 0$$
$$x^{3} + 3 x = 0$$
$$p x^{2} + q x + v + x^{3} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = 3$$
$$v = \frac{d}{a}$$
$$v = 0$$
Vieta Formulas
$$x_{1} + x_{2} + x_{3} = - p$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = q$$
$$x_{1} x_{2} x_{3} = v$$
$$x_{1} + x_{2} + x_{3} = 0$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = 3$$
$$x_{1} x_{2} x_{3} = 0$$
The graph
Rapid solution [src]
x1 = 0
$$x_{1} = 0$$
          ___
x2 = -I*\/ 3 
$$x_{2} = - \sqrt{3} i$$
         ___
x3 = I*\/ 3 
$$x_{3} = \sqrt{3} i$$
x3 = sqrt(3)*i
Sum and product of roots [src]
sum
      ___       ___
- I*\/ 3  + I*\/ 3 
$$- \sqrt{3} i + \sqrt{3} i$$
=
0
$$0$$
product
  /     ___\     ___
0*\-I*\/ 3 /*I*\/ 3 
$$\sqrt{3} i 0 \left(- \sqrt{3} i\right)$$
=
0
$$0$$
0
Numerical answer [src]
x1 = 1.73205080756888*i
x2 = 0.0
x3 = -1.73205080756888*i
x3 = -1.73205080756888*i