Mister Exam

Other calculators

-x*((sqrt(3)/2)-1)=1 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   /  ___    \    
   |\/ 3     |    
-x*|----- - 1| = 1
   \  2      /    
$$- x \left(-1 + \frac{\sqrt{3}}{2}\right) = 1$$
Detail solution
Given the linear equation:
-x*((sqrt(3)/2)-1) = 1

Expand brackets in the left part
-xsqrt/2+3/2)-1) = 1

Move free summands (without x)
from left part to right part, we given:
$$- x \left(-1 + \frac{\sqrt{3}}{2}\right) + 1 = 2$$
Divide both parts of the equation by (1 - x*(-1 + sqrt(3)/2))/x
x = 2 / ((1 - x*(-1 + sqrt(3)/2))/x)

We get the answer: x = 4 + 2*sqrt(3)
The graph
Sum and product of roots [src]
sum
        ___
4 + 2*\/ 3 
$$2 \sqrt{3} + 4$$
=
        ___
4 + 2*\/ 3 
$$2 \sqrt{3} + 4$$
product
        ___
4 + 2*\/ 3 
$$2 \sqrt{3} + 4$$
=
        ___
4 + 2*\/ 3 
$$2 \sqrt{3} + 4$$
4 + 2*sqrt(3)
Rapid solution [src]
             ___
x1 = 4 + 2*\/ 3 
$$x_{1} = 2 \sqrt{3} + 4$$
x1 = 2*sqrt(3) + 4
Numerical answer [src]
x1 = 7.46410161513775
x1 = 7.46410161513775