Mister Exam

Other calculators

-log(x)+log(2*x-1)/2-log(3)/2+log(2)=log(sqrt(4/5)) equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
          log(2*x - 1)   log(3)               /  _____\
-log(x) + ------------ - ------ + log(2) = log\\/ 4/5 /
               2           2                           
$$\left(\left(- \log{\left(x \right)} + \frac{\log{\left(2 x - 1 \right)}}{2}\right) - \frac{\log{\left(3 \right)}}{2}\right) + \log{\left(2 \right)} = \log{\left(\sqrt{\frac{4}{5}} \right)}$$
The graph
Rapid solution [src]
           ____
     5   \/ 10 
x1 = - - ------
     3     3   
$$x_{1} = \frac{5}{3} - \frac{\sqrt{10}}{3}$$
           ____
     5   \/ 10 
x2 = - + ------
     3     3   
$$x_{2} = \frac{\sqrt{10}}{3} + \frac{5}{3}$$
x2 = sqrt(10)/3 + 5/3
Sum and product of roots [src]
sum
      ____         ____
5   \/ 10    5   \/ 10 
- - ------ + - + ------
3     3      3     3   
$$\left(\frac{5}{3} - \frac{\sqrt{10}}{3}\right) + \left(\frac{\sqrt{10}}{3} + \frac{5}{3}\right)$$
=
10/3
$$\frac{10}{3}$$
product
/      ____\ /      ____\
|5   \/ 10 | |5   \/ 10 |
|- - ------|*|- + ------|
\3     3   / \3     3   /
$$\left(\frac{5}{3} - \frac{\sqrt{10}}{3}\right) \left(\frac{\sqrt{10}}{3} + \frac{5}{3}\right)$$
=
5/3
$$\frac{5}{3}$$
5/3
Numerical answer [src]
x1 = 2.72075922005613
x2 = 2.72075922005613 + 7.37644511638499e-15*i
x2 = 2.72075922005613 + 7.37644511638499e-15*i