Mister Exam

Other calculators

-7x^2-13x+8=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
     2               
- 7*x  - 13*x + 8 = 0
(7x213x)+8=0\left(- 7 x^{2} - 13 x\right) + 8 = 0
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
where D = b^2 - 4*a*c - it is the discriminant.
Because
a=7a = -7
b=13b = -13
c=8c = 8
, then
D = b^2 - 4 * a * c = 

(-13)^2 - 4 * (-7) * (8) = 393

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
x1=393141314x_{1} = - \frac{\sqrt{393}}{14} - \frac{13}{14}
x2=1314+39314x_{2} = - \frac{13}{14} + \frac{\sqrt{393}}{14}
Vieta's Theorem
rewrite the equation
(7x213x)+8=0\left(- 7 x^{2} - 13 x\right) + 8 = 0
of
ax2+bx+c=0a x^{2} + b x + c = 0
as reduced quadratic equation
x2+bxa+ca=0x^{2} + \frac{b x}{a} + \frac{c}{a} = 0
x2+13x787=0x^{2} + \frac{13 x}{7} - \frac{8}{7} = 0
px+q+x2=0p x + q + x^{2} = 0
where
p=bap = \frac{b}{a}
p=137p = \frac{13}{7}
q=caq = \frac{c}{a}
q=87q = - \frac{8}{7}
Vieta Formulas
x1+x2=px_{1} + x_{2} = - p
x1x2=qx_{1} x_{2} = q
x1+x2=137x_{1} + x_{2} = - \frac{13}{7}
x1x2=87x_{1} x_{2} = - \frac{8}{7}
The graph
05-15-10-51015-10001000
Rapid solution [src]
              _____
       13   \/ 393 
x1 = - -- + -------
       14      14  
x1=1314+39314x_{1} = - \frac{13}{14} + \frac{\sqrt{393}}{14}
              _____
       13   \/ 393 
x2 = - -- - -------
       14      14  
x2=393141314x_{2} = - \frac{\sqrt{393}}{14} - \frac{13}{14}
x2 = -sqrt(393)/14 - 13/14
Sum and product of roots [src]
sum
         _____            _____
  13   \/ 393      13   \/ 393 
- -- + ------- + - -- - -------
  14      14       14      14  
(393141314)+(1314+39314)\left(- \frac{\sqrt{393}}{14} - \frac{13}{14}\right) + \left(- \frac{13}{14} + \frac{\sqrt{393}}{14}\right)
=
-13/7
137- \frac{13}{7}
product
/         _____\ /         _____\
|  13   \/ 393 | |  13   \/ 393 |
|- -- + -------|*|- -- - -------|
\  14      14  / \  14      14  /
(1314+39314)(393141314)\left(- \frac{13}{14} + \frac{\sqrt{393}}{14}\right) \left(- \frac{\sqrt{393}}{14} - \frac{13}{14}\right)
=
-8/7
87- \frac{8}{7}
-8/7
Numerical answer [src]
x1 = 0.487444828685643
x2 = -2.3445876858285
x2 = -2.3445876858285