A quadratic equation can be solved using the discriminant. The roots of the quadratic equation: x1=2aD−b x2=2a−D−b where D = b^2 - 4*a*c - it is the discriminant. Because a=−7 b=−13 c=8 , then
D = b^2 - 4 * a * c =
(-13)^2 - 4 * (-7) * (8) = 393
Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
or x1=−14393−1413 x2=−1413+14393
Vieta's Theorem
rewrite the equation (−7x2−13x)+8=0 of ax2+bx+c=0 as reduced quadratic equation x2+abx+ac=0 x2+713x−78=0 px+q+x2=0 where p=ab p=713 q=ac q=−78 Vieta Formulas x1+x2=−p x1x2=q x1+x2=−713 x1x2=−78