Mister Exam

Other calculators

-3x+5y+3z=-5 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
-3*x + 5*y + 3*z = -5
$$3 z + \left(- 3 x + 5 y\right) = -5$$
Detail solution
Given the linear equation:
-3*x+5*y+3*z = -5

Looking for similar summands in the left part:
-3*x + 3*z + 5*y = -5

Move the summands with the other variables
from left part to right part, we given:
$$- 3 x + 5 y = - 3 z - 5$$
Divide both parts of the equation by (-3*x + 5*y)/x
x = -5 - 3*z / ((-3*x + 5*y)/x)

We get the answer: x = 5/3 + z + 5*y/3
The graph
Rapid solution [src]
     5   5*re(y)     /5*im(y)        \        
x1 = - + ------- + I*|------- + im(z)| + re(z)
     3      3        \   3           /        
$$x_{1} = i \left(\frac{5 \operatorname{im}{\left(y\right)}}{3} + \operatorname{im}{\left(z\right)}\right) + \frac{5 \operatorname{re}{\left(y\right)}}{3} + \operatorname{re}{\left(z\right)} + \frac{5}{3}$$
x1 = i*(5*im(y)/3 + im(z)) + 5*re(y)/3 + re(z) + 5/3
Sum and product of roots [src]
sum
5   5*re(y)     /5*im(y)        \        
- + ------- + I*|------- + im(z)| + re(z)
3      3        \   3           /        
$$i \left(\frac{5 \operatorname{im}{\left(y\right)}}{3} + \operatorname{im}{\left(z\right)}\right) + \frac{5 \operatorname{re}{\left(y\right)}}{3} + \operatorname{re}{\left(z\right)} + \frac{5}{3}$$
=
5   5*re(y)     /5*im(y)        \        
- + ------- + I*|------- + im(z)| + re(z)
3      3        \   3           /        
$$i \left(\frac{5 \operatorname{im}{\left(y\right)}}{3} + \operatorname{im}{\left(z\right)}\right) + \frac{5 \operatorname{re}{\left(y\right)}}{3} + \operatorname{re}{\left(z\right)} + \frac{5}{3}$$
product
5   5*re(y)     /5*im(y)        \        
- + ------- + I*|------- + im(z)| + re(z)
3      3        \   3           /        
$$i \left(\frac{5 \operatorname{im}{\left(y\right)}}{3} + \operatorname{im}{\left(z\right)}\right) + \frac{5 \operatorname{re}{\left(y\right)}}{3} + \operatorname{re}{\left(z\right)} + \frac{5}{3}$$
=
5   5*re(y)     /5*im(y)        \        
- + ------- + I*|------- + im(z)| + re(z)
3      3        \   3           /        
$$i \left(\frac{5 \operatorname{im}{\left(y\right)}}{3} + \operatorname{im}{\left(z\right)}\right) + \frac{5 \operatorname{re}{\left(y\right)}}{3} + \operatorname{re}{\left(z\right)} + \frac{5}{3}$$
5/3 + 5*re(y)/3 + i*(5*im(y)/3 + im(z)) + re(z)