-3x+5y+3z=-5 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the linear equation:
-3*x+5*y+3*z = -5
Looking for similar summands in the left part:
-3*x + 3*z + 5*y = -5
Move the summands with the other variables
from left part to right part, we given:
$$- 3 x + 5 y = - 3 z - 5$$
Divide both parts of the equation by (-3*x + 5*y)/x
x = -5 - 3*z / ((-3*x + 5*y)/x)
We get the answer: x = 5/3 + z + 5*y/3
5 5*re(y) /5*im(y) \
x1 = - + ------- + I*|------- + im(z)| + re(z)
3 3 \ 3 /
$$x_{1} = i \left(\frac{5 \operatorname{im}{\left(y\right)}}{3} + \operatorname{im}{\left(z\right)}\right) + \frac{5 \operatorname{re}{\left(y\right)}}{3} + \operatorname{re}{\left(z\right)} + \frac{5}{3}$$
x1 = i*(5*im(y)/3 + im(z)) + 5*re(y)/3 + re(z) + 5/3
Sum and product of roots
[src]
5 5*re(y) /5*im(y) \
- + ------- + I*|------- + im(z)| + re(z)
3 3 \ 3 /
$$i \left(\frac{5 \operatorname{im}{\left(y\right)}}{3} + \operatorname{im}{\left(z\right)}\right) + \frac{5 \operatorname{re}{\left(y\right)}}{3} + \operatorname{re}{\left(z\right)} + \frac{5}{3}$$
5 5*re(y) /5*im(y) \
- + ------- + I*|------- + im(z)| + re(z)
3 3 \ 3 /
$$i \left(\frac{5 \operatorname{im}{\left(y\right)}}{3} + \operatorname{im}{\left(z\right)}\right) + \frac{5 \operatorname{re}{\left(y\right)}}{3} + \operatorname{re}{\left(z\right)} + \frac{5}{3}$$
5 5*re(y) /5*im(y) \
- + ------- + I*|------- + im(z)| + re(z)
3 3 \ 3 /
$$i \left(\frac{5 \operatorname{im}{\left(y\right)}}{3} + \operatorname{im}{\left(z\right)}\right) + \frac{5 \operatorname{re}{\left(y\right)}}{3} + \operatorname{re}{\left(z\right)} + \frac{5}{3}$$
5 5*re(y) /5*im(y) \
- + ------- + I*|------- + im(z)| + re(z)
3 3 \ 3 /
$$i \left(\frac{5 \operatorname{im}{\left(y\right)}}{3} + \operatorname{im}{\left(z\right)}\right) + \frac{5 \operatorname{re}{\left(y\right)}}{3} + \operatorname{re}{\left(z\right)} + \frac{5}{3}$$
5/3 + 5*re(y)/3 + i*(5*im(y)/3 + im(z)) + re(z)