Mister Exam

Other calculators

-10x-3x^2=70 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
           2     
-10*x - 3*x  = 70
$$- 3 x^{2} - 10 x = 70$$
Detail solution
Move right part of the equation to
left part with negative sign.

The equation is transformed from
$$- 3 x^{2} - 10 x = 70$$
to
$$\left(- 3 x^{2} - 10 x\right) - 70 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = -3$$
$$b = -10$$
$$c = -70$$
, then
D = b^2 - 4 * a * c = 

(-10)^2 - 4 * (-3) * (-70) = -740

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = - \frac{5}{3} - \frac{\sqrt{185} i}{3}$$
$$x_{2} = - \frac{5}{3} + \frac{\sqrt{185} i}{3}$$
Vieta's Theorem
rewrite the equation
$$- 3 x^{2} - 10 x = 70$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} + \frac{10 x}{3} + \frac{70}{3} = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = \frac{10}{3}$$
$$q = \frac{c}{a}$$
$$q = \frac{70}{3}$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = - \frac{10}{3}$$
$$x_{1} x_{2} = \frac{70}{3}$$
The graph
Rapid solution [src]
               _____
       5   I*\/ 185 
x1 = - - - ---------
       3       3    
$$x_{1} = - \frac{5}{3} - \frac{\sqrt{185} i}{3}$$
               _____
       5   I*\/ 185 
x2 = - - + ---------
       3       3    
$$x_{2} = - \frac{5}{3} + \frac{\sqrt{185} i}{3}$$
x2 = -5/3 + sqrt(185)*i/3
Sum and product of roots [src]
sum
          _____             _____
  5   I*\/ 185      5   I*\/ 185 
- - - --------- + - - + ---------
  3       3         3       3    
$$\left(- \frac{5}{3} - \frac{\sqrt{185} i}{3}\right) + \left(- \frac{5}{3} + \frac{\sqrt{185} i}{3}\right)$$
=
-10/3
$$- \frac{10}{3}$$
product
/          _____\ /          _____\
|  5   I*\/ 185 | |  5   I*\/ 185 |
|- - - ---------|*|- - + ---------|
\  3       3    / \  3       3    /
$$\left(- \frac{5}{3} - \frac{\sqrt{185} i}{3}\right) \left(- \frac{5}{3} + \frac{\sqrt{185} i}{3}\right)$$
=
70/3
$$\frac{70}{3}$$
70/3
Numerical answer [src]
x1 = -1.66666666666667 + 4.53382350291181*i
x2 = -1.66666666666667 - 4.53382350291181*i
x2 = -1.66666666666667 - 4.53382350291181*i