Mister Exam

Other calculators

log(x)/log(4)=16 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
log(x)     
------ = 16
log(4)     
$$\frac{\log{\left(x \right)}}{\log{\left(4 \right)}} = 16$$
Detail solution
Given the equation
$$\frac{\log{\left(x \right)}}{\log{\left(4 \right)}} = 16$$
$$\frac{\log{\left(x \right)}}{\log{\left(4 \right)}} = 16$$
Let's divide both parts of the equation by the multiplier of log =1/log(4)
$$\log{\left(x \right)} = 16 \log{\left(4 \right)}$$
This equation is of the form:
log(v)=p

By definition log
v=e^p

then
$$x = e^{\frac{16}{\frac{1}{\log{\left(4 \right)}}}}$$
simplify
$$x = 4294967296$$
The graph
Rapid solution [src]
x1 = 4294967296
$$x_{1} = 4294967296$$
x1 = 4294967296
Sum and product of roots [src]
sum
4294967296
$$4294967296$$
=
4294967296
$$4294967296$$
product
4294967296
$$4294967296$$
=
4294967296
$$4294967296$$
4294967296
Numerical answer [src]
x1 = 4294967296.0
x2 = 4294967296.0 - 1.36806337186136e-18*i
x2 = 4294967296.0 - 1.36806337186136e-18*i