The teacher will be very surprised to see your correct solution 😉
2 log (2)*x - log(2*x) - 2 = 0
sum
/ 2 -2 \ / 2 -2 \
|-log (2)*e | |-log (2)*e |
W|-------------| W|-------------, -1|
\ 2 / \ 2 /
- ---------------- - --------------------
2 2
log (2) log (2)
=
/ 2 -2 \ / 2 -2 \
|-log (2)*e | |-log (2)*e |
W|-------------| W|-------------, -1|
\ 2 / \ 2 /
- ---------------- - --------------------
2 2
log (2) log (2)
product
/ 2 -2 \ / 2 -2 \
|-log (2)*e | |-log (2)*e |
-W|-------------| -W|-------------, -1|
\ 2 / \ 2 /
------------------*----------------------
2 2
log (2) log (2)
=
/ 2 -2 \ / 2 -2 \
|-log (2)*e | |-log (2)*e |
W|-------------|*W|-------------, -1|
\ 2 / \ 2 /
-------------------------------------
4
log (2)
LambertW(-log(2)^2*exp(-2)/2)*LambertW(-log(2)^2*exp(-2)/2, -1)/log(2)^4
/ 2 -2 \
|-log (2)*e |
-W|-------------|
\ 2 /
x1 = ------------------
2
log (2)
/ 2 -2 \
|-log (2)*e |
-W|-------------, -1|
\ 2 /
x2 = ----------------------
2
log (2)
x2 = -LambertW(-exp(-2)*log(2^2/2, -1)/log(2)^2)