log^(2)(2x-1)=3 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Sum and product of roots
[src]
___ ___
\/ 3 -\/ 3
1 e 1 e
- + ------ + - + -------
2 2 2 2
$$\left(\frac{1}{2 e^{\sqrt{3}}} + \frac{1}{2}\right) + \left(\frac{1}{2} + \frac{e^{\sqrt{3}}}{2}\right)$$
___ ___
\/ 3 -\/ 3
e e
1 + ------ + -------
2 2
$$\frac{1}{2 e^{\sqrt{3}}} + 1 + \frac{e^{\sqrt{3}}}{2}$$
/ ___\ / ___\
| \/ 3 | | -\/ 3 |
|1 e | |1 e |
|- + ------|*|- + -------|
\2 2 / \2 2 /
$$\left(\frac{1}{2} + \frac{e^{\sqrt{3}}}{2}\right) \left(\frac{1}{2 e^{\sqrt{3}}} + \frac{1}{2}\right)$$
/ ___\
2|\/ 3 |
cosh |-----|
\ 2 /
$$\cosh^{2}{\left(\frac{\sqrt{3}}{2} \right)}$$
___
\/ 3
1 e
x1 = - + ------
2 2
$$x_{1} = \frac{1}{2} + \frac{e^{\sqrt{3}}}{2}$$
___
-\/ 3
1 e
x2 = - + -------
2 2
$$x_{2} = \frac{1}{2 e^{\sqrt{3}}} + \frac{1}{2}$$
x2 = exp(-sqrt(3))/2 + 1/2