Mister Exam

Other calculators

log^1/5(x^2-4x)=1 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
   _______________    
5 /    / 2      \     
\/  log\x  - 4*x/  = 1
$$\sqrt[5]{\log{\left(x^{2} - 4 x \right)}} = 1$$
The graph
Sum and product of roots [src]
sum
      _______         _______
2 - \/ 4 + E  + 2 + \/ 4 + E 
$$\left(2 - \sqrt{e + 4}\right) + \left(2 + \sqrt{e + 4}\right)$$
=
4
$$4$$
product
/      _______\ /      _______\
\2 - \/ 4 + E /*\2 + \/ 4 + E /
$$\left(2 - \sqrt{e + 4}\right) \left(2 + \sqrt{e + 4}\right)$$
=
-E
$$- e$$
-E
Rapid solution [src]
           _______
x1 = 2 - \/ 4 + E 
$$x_{1} = 2 - \sqrt{e + 4}$$
           _______
x2 = 2 + \/ 4 + E 
$$x_{2} = 2 + \sqrt{e + 4}$$
x2 = 2 + sqrt(E + 4)
Numerical answer [src]
x1 = -0.59196485864663
x2 = 4.59196485864663
x2 = 4.59196485864663