log(7)(3x-5)=1 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation:
log(7)*(3*x-5) = 1
Expand expressions:
-5*log(7) + 3*x*log(7) = 1
Reducing, you get:
-1 - 5*log(7) + 3*x*log(7) = 0
Expand brackets in the left part
-1 - 5*log7 + 3*x*log7 = 0
Move free summands (without x)
from left part to right part, we given:
$$3 x \log{\left(7 \right)} - 5 \log{\left(7 \right)} = 1$$
Divide both parts of the equation by (-5*log(7) + 3*x*log(7))/x
x = 1 / ((-5*log(7) + 3*x*log(7))/x)
We get the answer: x = (1 + log(16807))/(3*log(7))
Sum and product of roots
[src]
1 + log(16807)
--------------
3*log(7)
$$\frac{1 + \log{\left(16807 \right)}}{3 \log{\left(7 \right)}}$$
1 + log(16807)
--------------
3*log(7)
$$\frac{1 + \log{\left(16807 \right)}}{3 \log{\left(7 \right)}}$$
1 + log(16807)
--------------
3*log(7)
$$\frac{1 + \log{\left(16807 \right)}}{3 \log{\left(7 \right)}}$$
1 + log(16807)
--------------
3*log(7)
$$\frac{1 + \log{\left(16807 \right)}}{3 \log{\left(7 \right)}}$$
(1 + log(16807))/(3*log(7))
1 + log(16807)
x1 = --------------
3*log(7)
$$x_{1} = \frac{1 + \log{\left(16807 \right)}}{3 \log{\left(7 \right)}}$$
x1 = (1 + log(16807))/(3*log(7))