Mister Exam

Other calculators

log(7)(3x-5)=1 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
log(7)*(3*x - 5) = 1
$$\left(3 x - 5\right) \log{\left(7 \right)} = 1$$
Detail solution
Given the equation:
log(7)*(3*x-5) = 1

Expand expressions:
-5*log(7) + 3*x*log(7) = 1

Reducing, you get:
-1 - 5*log(7) + 3*x*log(7) = 0

Expand brackets in the left part
-1 - 5*log7 + 3*x*log7 = 0

Move free summands (without x)
from left part to right part, we given:
$$3 x \log{\left(7 \right)} - 5 \log{\left(7 \right)} = 1$$
Divide both parts of the equation by (-5*log(7) + 3*x*log(7))/x
x = 1 / ((-5*log(7) + 3*x*log(7))/x)

We get the answer: x = (1 + log(16807))/(3*log(7))
The graph
Sum and product of roots [src]
sum
1 + log(16807)
--------------
   3*log(7)   
$$\frac{1 + \log{\left(16807 \right)}}{3 \log{\left(7 \right)}}$$
=
1 + log(16807)
--------------
   3*log(7)   
$$\frac{1 + \log{\left(16807 \right)}}{3 \log{\left(7 \right)}}$$
product
1 + log(16807)
--------------
   3*log(7)   
$$\frac{1 + \log{\left(16807 \right)}}{3 \log{\left(7 \right)}}$$
=
1 + log(16807)
--------------
   3*log(7)   
$$\frac{1 + \log{\left(16807 \right)}}{3 \log{\left(7 \right)}}$$
(1 + log(16807))/(3*log(7))
Rapid solution [src]
     1 + log(16807)
x1 = --------------
        3*log(7)   
$$x_{1} = \frac{1 + \log{\left(16807 \right)}}{3 \log{\left(7 \right)}}$$
x1 = (1 + log(16807))/(3*log(7))
Numerical answer [src]
x1 = 1.83796611412325
x1 = 1.83796611412325