Mister Exam

Other calculators

log(1/7)(7-x)=-2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
log(1/7)*(7 - x) = -2
$$\left(7 - x\right) \log{\left(\frac{1}{7} \right)} = -2$$
Detail solution
Given the equation:
log(1/7)*(7-x) = -2

Expand expressions:
-7*log(7) + x*log(7) = -2

Reducing, you get:
2 - 7*log(7) + x*log(7) = 0

Expand brackets in the left part
2 - 7*log7 + x*log7 = 0

Move free summands (without x)
from left part to right part, we given:
$$x \log{\left(7 \right)} - 7 \log{\left(7 \right)} = -2$$
Divide both parts of the equation by (-7*log(7) + x*log(7))/x
x = -2 / ((-7*log(7) + x*log(7))/x)

We get the answer: x = (-2 + log(823543))/log(7)
The graph
Rapid solution [src]
     -2 + log(823543)
x1 = ----------------
          log(7)     
$$x_{1} = \frac{-2 + \log{\left(823543 \right)}}{\log{\left(7 \right)}}$$
x1 = (-2 + log(823543))/log(7)
Sum and product of roots [src]
sum
-2 + log(823543)
----------------
     log(7)     
$$\frac{-2 + \log{\left(823543 \right)}}{\log{\left(7 \right)}}$$
=
-2 + log(823543)
----------------
     log(7)     
$$\frac{-2 + \log{\left(823543 \right)}}{\log{\left(7 \right)}}$$
product
-2 + log(823543)
----------------
     log(7)     
$$\frac{-2 + \log{\left(823543 \right)}}{\log{\left(7 \right)}}$$
=
-2 + log(823543)
----------------
     log(7)     
$$\frac{-2 + \log{\left(823543 \right)}}{\log{\left(7 \right)}}$$
(-2 + log(823543))/log(7)
Numerical answer [src]
x1 = 5.9722033152605
x1 = 5.9722033152605