log(1/9)(5-x)=-2 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation:
log(1/9)*(5-x) = -2
Expand expressions:
-10*log(3) + 2*x*log(3) = -2
Reducing, you get:
2 - 10*log(3) + 2*x*log(3) = 0
Expand brackets in the left part
2 - 10*log3 + 2*x*log3 = 0
Move free summands (without x)
from left part to right part, we given:
$$2 x \log{\left(3 \right)} - 10 \log{\left(3 \right)} = -2$$
Divide both parts of the equation by (-10*log(3) + 2*x*log(3))/x
x = -2 / ((-10*log(3) + 2*x*log(3))/x)
We get the answer: x = (-1 + log(243))/log(3)
Sum and product of roots
[src]
-2 + log(59049)
---------------
log(9)
$$\frac{-2 + \log{\left(59049 \right)}}{\log{\left(9 \right)}}$$
-2 + log(59049)
---------------
log(9)
$$\frac{-2 + \log{\left(59049 \right)}}{\log{\left(9 \right)}}$$
-2 + log(59049)
---------------
log(9)
$$\frac{-2 + \log{\left(59049 \right)}}{\log{\left(9 \right)}}$$
-2 + log(59049)
---------------
log(9)
$$\frac{-2 + \log{\left(59049 \right)}}{\log{\left(9 \right)}}$$
-2 + log(59049)
x1 = ---------------
log(9)
$$x_{1} = \frac{-2 + \log{\left(59049 \right)}}{\log{\left(9 \right)}}$$
x1 = (-2 + log(59049))/log(9)