Mister Exam

Other calculators

log(1/9)(5-x)=-2 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
log(1/9)*(5 - x) = -2
$$\left(5 - x\right) \log{\left(\frac{1}{9} \right)} = -2$$
Detail solution
Given the equation:
log(1/9)*(5-x) = -2

Expand expressions:
-10*log(3) + 2*x*log(3) = -2

Reducing, you get:
2 - 10*log(3) + 2*x*log(3) = 0

Expand brackets in the left part
2 - 10*log3 + 2*x*log3 = 0

Move free summands (without x)
from left part to right part, we given:
$$2 x \log{\left(3 \right)} - 10 \log{\left(3 \right)} = -2$$
Divide both parts of the equation by (-10*log(3) + 2*x*log(3))/x
x = -2 / ((-10*log(3) + 2*x*log(3))/x)

We get the answer: x = (-1 + log(243))/log(3)
The graph
Sum and product of roots [src]
sum
-2 + log(59049)
---------------
     log(9)    
$$\frac{-2 + \log{\left(59049 \right)}}{\log{\left(9 \right)}}$$
=
-2 + log(59049)
---------------
     log(9)    
$$\frac{-2 + \log{\left(59049 \right)}}{\log{\left(9 \right)}}$$
product
-2 + log(59049)
---------------
     log(9)    
$$\frac{-2 + \log{\left(59049 \right)}}{\log{\left(9 \right)}}$$
=
-2 + log(59049)
---------------
     log(9)    
$$\frac{-2 + \log{\left(59049 \right)}}{\log{\left(9 \right)}}$$
(-2 + log(59049))/log(9)
Rapid solution [src]
     -2 + log(59049)
x1 = ---------------
          log(9)    
$$x_{1} = \frac{-2 + \log{\left(59049 \right)}}{\log{\left(9 \right)}}$$
x1 = (-2 + log(59049))/log(9)
Numerical answer [src]
x1 = 4.08976077337316
x1 = 4.08976077337316