log(1/9)(5-x)=-2 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation:
log(1/9)*(5-x) = -2 Expand expressions:
-10*log(3) + 2*x*log(3) = -2 Reducing, you get:
2 - 10*log(3) + 2*x*log(3) = 0 Expand brackets in the left part
2 - 10*log3 + 2*x*log3 = 0 Move free summands (without x)
from left part to right part, we given:
2 x log ( 3 ) − 10 log ( 3 ) = − 2 2 x \log{\left(3 \right)} - 10 \log{\left(3 \right)} = -2 2 x log ( 3 ) − 10 log ( 3 ) = − 2 Divide both parts of the equation by (-10*log(3) + 2*x*log(3))/x
x = -2 / ((-10*log(3) + 2*x*log(3))/x) We get the answer: x = (-1 + log(243))/log(3)
The graph
-7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 -50 50
Sum and product of roots
[src]
-2 + log(59049)
---------------
log(9)
− 2 + log ( 59049 ) log ( 9 ) \frac{-2 + \log{\left(59049 \right)}}{\log{\left(9 \right)}} log ( 9 ) − 2 + log ( 59049 )
-2 + log(59049)
---------------
log(9)
− 2 + log ( 59049 ) log ( 9 ) \frac{-2 + \log{\left(59049 \right)}}{\log{\left(9 \right)}} log ( 9 ) − 2 + log ( 59049 )
-2 + log(59049)
---------------
log(9)
− 2 + log ( 59049 ) log ( 9 ) \frac{-2 + \log{\left(59049 \right)}}{\log{\left(9 \right)}} log ( 9 ) − 2 + log ( 59049 )
-2 + log(59049)
---------------
log(9)
− 2 + log ( 59049 ) log ( 9 ) \frac{-2 + \log{\left(59049 \right)}}{\log{\left(9 \right)}} log ( 9 ) − 2 + log ( 59049 )
-2 + log(59049)
x1 = ---------------
log(9)
x 1 = − 2 + log ( 59049 ) log ( 9 ) x_{1} = \frac{-2 + \log{\left(59049 \right)}}{\log{\left(9 \right)}} x 1 = log ( 9 ) − 2 + log ( 59049 )
x1 = (-2 + log(59049))/log(9)