Mister Exam

Other calculators

log2sin2pi/15 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
log(2*sin(2*p))*I    
----------------- = 0
        15           
$$\frac{i \log{\left(2 \sin{\left(2 p \right)} \right)}}{15} = 0$$
Detail solution
Given the equation
$$\frac{i \log{\left(2 \sin{\left(2 p \right)} \right)}}{15} = 0$$
transform
$$\frac{i \log{\left(2 \sin{\left(2 p \right)} \right)}}{15} = 0$$
$$\frac{i \log{\left(2 \sin{\left(2 p \right)} \right)}}{15} = 0$$
Do replacement
$$w = \sin{\left(2 p \right)}$$
Given the equation
$$\frac{i \log{\left(2 w \right)}}{15} = 0$$
$$\frac{i \log{\left(2 w \right)}}{15} = 0$$
Let's divide both parts of the equation by the multiplier of log =i/15
$$\log{\left(2 w \right)} = 0$$
This equation is of the form:
log(v)=p

By definition log
v=e^p

then
$$2 w = e^{\frac{0}{\frac{1}{15} i}}$$
simplify
$$2 w = 1$$
$$w = \frac{1}{2}$$
do backward replacement
$$\sin{\left(2 p \right)} = w$$
Given the equation
$$\sin{\left(2 p \right)} = w$$
- this is the simplest trigonometric equation
This equation is transformed to
$$2 p = 2 \pi n + \operatorname{asin}{\left(w \right)}$$
$$2 p = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi$$
Or
$$2 p = 2 \pi n + \operatorname{asin}{\left(w \right)}$$
$$2 p = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi$$
, where n - is a integer
Divide both parts of the equation by
$$2$$
substitute w:
The graph
Rapid solution [src]
     pi
p1 = --
     12
$$p_{1} = \frac{\pi}{12}$$
     5*pi
p2 = ----
      12 
$$p_{2} = \frac{5 \pi}{12}$$
p2 = 5*pi/12
Sum and product of roots [src]
sum
pi   5*pi
-- + ----
12    12 
$$\frac{\pi}{12} + \frac{5 \pi}{12}$$
=
pi
--
2 
$$\frac{\pi}{2}$$
product
pi 5*pi
--*----
12  12 
$$\frac{\pi}{12} \frac{5 \pi}{12}$$
=
    2
5*pi 
-----
 144 
$$\frac{5 \pi^{2}}{144}$$
5*pi^2/144
Numerical answer [src]
p1 = 3.40339204138894
p2 = 1.30899693899575
p3 = -4.97418836818384
p4 = 10.7337748997651
p5 = -6.02138591938044
p6 = -8.11578102177363
p7 = -9.16297857297023
p8 = 6.54498469497874
p9 = 0.261799387799149
p10 = 4.45058959258554
p11 = -2.87979326579064
p12 = -1.83259571459405
p12 = -1.83259571459405