ln(x)-ln(x-1)=t equation
The teacher will be very surprised to see your correct solution 😉
The solution
Sum and product of roots
[src]
/ t \ / t \
| e | | e |
I*im|-------| + re|-------|
| t| | t|
\-1 + e / \-1 + e /
$$\operatorname{re}{\left(\frac{e^{t}}{e^{t} - 1}\right)} + i \operatorname{im}{\left(\frac{e^{t}}{e^{t} - 1}\right)}$$
/ t \ / t \
| e | | e |
I*im|-------| + re|-------|
| t| | t|
\-1 + e / \-1 + e /
$$\operatorname{re}{\left(\frac{e^{t}}{e^{t} - 1}\right)} + i \operatorname{im}{\left(\frac{e^{t}}{e^{t} - 1}\right)}$$
/ t \ / t \
| e | | e |
I*im|-------| + re|-------|
| t| | t|
\-1 + e / \-1 + e /
$$\operatorname{re}{\left(\frac{e^{t}}{e^{t} - 1}\right)} + i \operatorname{im}{\left(\frac{e^{t}}{e^{t} - 1}\right)}$$
/ t \ / t \
| e | | e |
I*im|-------| + re|-------|
| t| | t|
\-1 + e / \-1 + e /
$$\operatorname{re}{\left(\frac{e^{t}}{e^{t} - 1}\right)} + i \operatorname{im}{\left(\frac{e^{t}}{e^{t} - 1}\right)}$$
i*im(exp(t)/(-1 + exp(t))) + re(exp(t)/(-1 + exp(t)))
/ t \ / t \
| e | | e |
x1 = I*im|-------| + re|-------|
| t| | t|
\-1 + e / \-1 + e /
$$x_{1} = \operatorname{re}{\left(\frac{e^{t}}{e^{t} - 1}\right)} + i \operatorname{im}{\left(\frac{e^{t}}{e^{t} - 1}\right)}$$
x1 = re(exp(t)/(exp(t) - 1)) + i*im(exp(t)/(exp(t) - 1))