This equation is of the form
$$a\ k^2 + b\ k + c = 0$$
A quadratic equation can be solved using the discriminant
The roots of the quadratic equation:
$$k_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$k_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where $D = b^2 - 4 a c$ is the discriminant.
Because
$$a = 1$$
$$b = 2$$
$$c = 5$$
, then
$$D = b^2 - 4\ a\ c = $$
$$\left(-1\right) 1 \cdot 4 \cdot 5 + 2^{2} = -16$$
Because D<0, then the equation
has no real roots,
but complex roots is exists.
$$k_1 = \frac{(-b + \sqrt{D})}{2 a}$$
$$k_2 = \frac{(-b - \sqrt{D})}{2 a}$$
or
$$k_{1} = -1 + 2 i$$
Simplify$$k_{2} = -1 - 2 i$$
Simplify