Mister Exam

Other calculators

4.2x²+4.9x+2.1=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
    2                
21*x    49*x   21    
----- + ---- + -- = 0
  5      10    10    
$$\left(\frac{21 x^{2}}{5} + \frac{49 x}{10}\right) + \frac{21}{10} = 0$$
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = \frac{21}{5}$$
$$b = \frac{49}{10}$$
$$c = \frac{21}{10}$$
, then
D = b^2 - 4 * a * c = 

(49/10)^2 - 4 * (21/5) * (21/10) = -1127/100

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = - \frac{7}{12} + \frac{\sqrt{23} i}{12}$$
$$x_{2} = - \frac{7}{12} - \frac{\sqrt{23} i}{12}$$
Vieta's Theorem
rewrite the equation
$$\left(\frac{21 x^{2}}{5} + \frac{49 x}{10}\right) + \frac{21}{10} = 0$$
of
$$a x^{2} + b x + c = 0$$
as reduced quadratic equation
$$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
$$x^{2} + \frac{7 x}{6} + \frac{1}{2} = 0$$
$$p x + q + x^{2} = 0$$
where
$$p = \frac{b}{a}$$
$$p = \frac{7}{6}$$
$$q = \frac{c}{a}$$
$$q = \frac{1}{2}$$
Vieta Formulas
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = - \frac{7}{6}$$
$$x_{1} x_{2} = \frac{1}{2}$$
The graph
Sum and product of roots [src]
sum
           ____              ____
  7    I*\/ 23      7    I*\/ 23 
- -- - -------- + - -- + --------
  12      12        12      12   
$$\left(- \frac{7}{12} - \frac{\sqrt{23} i}{12}\right) + \left(- \frac{7}{12} + \frac{\sqrt{23} i}{12}\right)$$
=
-7/6
$$- \frac{7}{6}$$
product
/           ____\ /           ____\
|  7    I*\/ 23 | |  7    I*\/ 23 |
|- -- - --------|*|- -- + --------|
\  12      12   / \  12      12   /
$$\left(- \frac{7}{12} - \frac{\sqrt{23} i}{12}\right) \left(- \frac{7}{12} + \frac{\sqrt{23} i}{12}\right)$$
=
1/2
$$\frac{1}{2}$$
1/2
Rapid solution [src]
                ____
       7    I*\/ 23 
x1 = - -- - --------
       12      12   
$$x_{1} = - \frac{7}{12} - \frac{\sqrt{23} i}{12}$$
                ____
       7    I*\/ 23 
x2 = - -- + --------
       12      12   
$$x_{2} = - \frac{7}{12} + \frac{\sqrt{23} i}{12}$$
x2 = -7/12 + sqrt(23)*i/12
Numerical answer [src]
x1 = -0.583333333333333 - 0.399652626942727*i
x2 = -0.583333333333333 + 0.399652626942727*i
x2 = -0.583333333333333 + 0.399652626942727*i