Mister Exam

Other calculators

4(3x-2)2x=5x+12 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
4*(3*x - 2)*2*x = 5*x + 12
$$x 2 \cdot 4 \left(3 x - 2\right) = 5 x + 12$$
Detail solution
Move right part of the equation to
left part with negative sign.

The equation is transformed from
$$x 2 \cdot 4 \left(3 x - 2\right) = 5 x + 12$$
to
$$x 2 \cdot 4 \left(3 x - 2\right) + \left(- 5 x - 12\right) = 0$$
Expand the expression in the equation
$$x 2 \cdot 4 \left(3 x - 2\right) + \left(- 5 x - 12\right) = 0$$
We get the quadratic equation
$$24 x^{2} - 21 x - 12 = 0$$
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 24$$
$$b = -21$$
$$c = -12$$
, then
D = b^2 - 4 * a * c = 

(-21)^2 - 4 * (24) * (-12) = 1593

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
$$x_{1} = \frac{7}{16} + \frac{\sqrt{177}}{16}$$
$$x_{2} = \frac{7}{16} - \frac{\sqrt{177}}{16}$$
The graph
Sum and product of roots [src]
sum
       _____          _____
7    \/ 177    7    \/ 177 
-- - ------- + -- + -------
16      16     16      16  
$$\left(\frac{7}{16} - \frac{\sqrt{177}}{16}\right) + \left(\frac{7}{16} + \frac{\sqrt{177}}{16}\right)$$
=
7/8
$$\frac{7}{8}$$
product
/       _____\ /       _____\
|7    \/ 177 | |7    \/ 177 |
|-- - -------|*|-- + -------|
\16      16  / \16      16  /
$$\left(\frac{7}{16} - \frac{\sqrt{177}}{16}\right) \left(\frac{7}{16} + \frac{\sqrt{177}}{16}\right)$$
=
-1/2
$$- \frac{1}{2}$$
-1/2
Rapid solution [src]
            _____
     7    \/ 177 
x1 = -- - -------
     16      16  
$$x_{1} = \frac{7}{16} - \frac{\sqrt{177}}{16}$$
            _____
     7    \/ 177 
x2 = -- + -------
     16      16  
$$x_{2} = \frac{7}{16} + \frac{\sqrt{177}}{16}$$
x2 = 7/16 + sqrt(177)/16
Numerical answer [src]
x1 = 1.26900841847813
x2 = -0.394008418478129
x2 = -0.394008418478129