5^x-2=25 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation:
$$5^{x} - 2 = 25$$
or
$$\left(5^{x} - 2\right) - 25 = 0$$
or
$$5^{x} = 27$$
or
$$5^{x} = 27$$
- this is the simplest exponential equation
Do replacement
$$v = 5^{x}$$
we get
$$v - 27 = 0$$
or
$$v - 27 = 0$$
Move free summands (without v)
from left part to right part, we given:
$$v = 27$$
We get the answer: v = 27
do backward replacement
$$5^{x} = v$$
or
$$x = \frac{\log{\left(v \right)}}{\log{\left(5 \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(27 \right)}}{\log{\left(5 \right)}} = \frac{3 \log{\left(3 \right)}}{\log{\left(5 \right)}}$$
Sum and product of roots
[src]
$$\frac{3 \log{\left(3 \right)}}{\log{\left(5 \right)}}$$
$$\frac{3 \log{\left(3 \right)}}{\log{\left(5 \right)}}$$
$$\frac{3 \log{\left(3 \right)}}{\log{\left(5 \right)}}$$
$$\frac{3 \log{\left(3 \right)}}{\log{\left(5 \right)}}$$
3*log(3)
x1 = --------
log(5)
$$x_{1} = \frac{3 \log{\left(3 \right)}}{\log{\left(5 \right)}}$$