Given the equation:
$$\left(\sqrt{5}\right)^{x - 1} = \frac{1}{5}$$
or
$$\left(\sqrt{5}\right)^{x - 1} - \frac{1}{5} = 0$$
or
$$\frac{\sqrt{5} \cdot 5^{\frac{x}{2}}}{5} = \frac{1}{5}$$
or
$$5^{\frac{x}{2}} = \frac{\sqrt{5}}{5}$$
- this is the simplest exponential equation
Do replacement
$$v = 5^{\frac{x}{2}}$$
we get
$$v - \frac{\sqrt{5}}{5} = 0$$
or
$$v - \frac{\sqrt{5}}{5} = 0$$
Expand brackets in the left part
v - sqrt5/5 = 0
Divide both parts of the equation by (v - sqrt(5)/5)/v
v = 0 / ((v - sqrt(5)/5)/v)
We get the answer: v = sqrt(5)/5
do backward replacement
$$5^{\frac{x}{2}} = v$$
or
$$x = \frac{\log{\left(v \right)}}{\log{\left(\sqrt{5} \right)}}$$
The final answer
$$x_{1} = \frac{\log{\left(\frac{\sqrt{5}}{5} \right)}}{\log{\left(\sqrt{5} \right)}} = -1$$